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ABSTRACT: Vibration-based damage detection methods are popular for the structural health 
monitoring. However, they can only detect fairly large damages. Usually external forces such as 
impact pulse, ambient vibrations and sine-wave forces are applied as the excitations. In this 
paper, we propose the method to use the chaotic excitation to vibrate the structures. The 
attractors rebuild from the output responses are used for the minor damage detection. After the 
damage is detected, it is further quantified using the Kalman Filter technique. Simulations of a 
4-story building subjected to chaotic excitation are conducted. The structural responses and 
related attractors are analyzed. There results show that the attractor distances increase 
monotonously with the increase of the damage degree. Thus, damages, including minor damages, 
can be effectively detected using the proposed approach. With the Kalman Filter technique, 
minor damages which have the stiffness decrease of about 5% or lower can be correctly 
quantified. The proposed approach will be helpful for detecting and evaluating minor damages at 
the early stage for the structural health monitoring. 
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1. INTRODUCTION 
 
Structural health monitoring of civil engineering structures is a fundamental issue for structural 
safety and integrity, due to the fact that they will deteriorate just after they are built and put into 
services. The failure of structures will not only result in severe economic lost but may threaten 
the lives of people. Hence maintaining safety and reliable civil engineering structures for daily 
use is an extremely important issue which has received considerable attention in literature in 
recent years. Deterioration of the structure often refers to the structural damage and it can be 
reflected by the “deterioration” of the structural parameters. In practice, damage was defined as 
the changes introduced into a system which adversely affected its current or future performance 
[1]. Therefore changes in structural parameters have been extensively applied as effective tools 
for damage detection. Many methods are developed for this purpose. Among which, the 
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vibration-based damage identification (VBDI) methods draws extensive attention and are deeply 
developed. 
 
As we know, the deterioration of the civil engineering structures usually begins from the local 
and small damages. Small damages gradually develop and become large damages and at last 
cause failure of the structure. For the consideration of the structural safety and reliability, 
detecting small damages is essential and useful. Also, Adewuyi and Wu found that the popular 
modal parameter based methods could be easily degraded by noises [2]. Their research proved 
that even when 2% of noise was added into the signals, the damage identification results became 
very poor. Therefore, in order to detect miner damages to ensure the safety and reliability of the 
structures, development of other approaches is necessary, in which chaos attractor-based analysis 
seems to be a promising way. However, in many times, detection alone may not be sufficient for 
the purpose of damage evaluation and structural maintenance. In this case, damage requires to be 
further quantified. In this paper, the damage will be detected and quantified by identifying 
structural parameters using the Kalman Filter. Thus the structural deterioration can be detected 
and evaluated at the early stage and proper relevant measurement can be applied to ensure the 
safety of the structures. 
 
2. MINOR DAMAGE DETECTION WITH CHAOTIC ATTRACTORS 
 
Recently, some new damage detection techniques have been proposed by using chaotic excitation 
and attractor analysis. In the field of nonlinear dynamics, systems are often described via their 
state space. Given infinite time, an ensemble of trajectories evolving in the state space can trace 
out a dynamical attractor which may be thought of as a geometrical object in the space to which 
all trajectories belong. The attractor of the space actually contains useful information due to the 
fact that it reflects the invariant properties of the system, and therefore draws much attention to 
the application of system classification. 
 
Basically, attractor-based approach requires the acknowledgement of each state variable, which 
will make it very inconvenient in practice. In steady, attractor reconstruction is often applied, 
with its advantages to allow only a small number of variables be observed in real applications. 
Attractor reconstruction is a technique to recreate a topologically equivalent picture to the 
original multi-dimensional system behavior. Considering a low-dimensional deterministic 
original system composed of d variables, attractor of the original system is obtained by plotting 
time series of d variables in d dimensional space. However, as mentioned, it is always the case 
that limited number of variables can only be observed. This limitation can be solved using the 
Takens’s theorem [3]. For a time series 1x , 2x ,…, Nx  of a single variable x, the embedding 
vector can be defined by 

( 1)( , , , )T
i i i i mx x xτ τ+ + −=X    ( 1, 2, mi N=  )                  (1)  

where m is embedding dimension, τ is delay time and ( 1)mN N m τ= − − . By plotting iX in m 
dimensional space from index i of 1 to mN , an attractor which is not the same with the original 
attractor itself but is topologically equivalent to it can be reconstructed by only a single variable. 
 
Even though white noise is often used for VBDI analysis, it cannot be used for attractor-based 



analysis, because it is not deterministic and cannot yield deterministic responses. For applying 
the attractor-based analysis, the chaotic signal as the input is usually applied to be the excitation. 
Chaotic signals possess broad band frequency domain like noise, so that they can excite 
desirable number of modes. However, unlike the noise which is a random signal, chaotic signal 
is a low dimensional deterministic signal, so that it can provide deterministic and low 
dimensional responses. Also, with the deterministic chaotic excitations, noises can be 
significantly reduced, simply by stacking and averaging. 
 
In literature, there are several chaotic attractors subtracted from different chaotic signals, such as 
Lorenz signal, Chen signal, Rössler signal, etc. In practice, Lorenz signal is the most popular and 
the derived Lorenz attractor is applied widely in engineering field. The Lorenz signal is the 
produced by three ordinary differential equations now known as the Lorenz equations. The 
governing equations of the typical Lorenz system can be expressed as 

( )x a y x= −  
y cx xz y= − −                               (2) 
z xy bz= −  

which is chaotic when a=10, b=8/3, c=28. 
 
The three dimensional Lorenz chaotic signals can be seen in Figure 1, and corresponding 
constructed attractor can be found in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Three dimensional Lorenz signals 
 
As mentioned before, attractors can be reconstructed by the signal in one direction, Figure 3 
shows a reconstructed Lorenz attractor by only using x direction signal, with the delay 10τ = . 
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Figure 2. Constructed Lorenz attractor 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Reconstructed Lorenz attractor by only using x direction signal 
 

In the structural health monitoring field, attractors, as a special feature, were also used for the 
damage detection. Nichols et al. detected the damage by comparing the defined “features” based 
on attractors reconstructed from healthy and damaged structural responses using chaotic 
excitation [4]. Sato et al. also proposed an attractor based damage detection method using 
chaotic excitation and recurrence analysis [5]. Since damages, even small ones, can change the 
state of a system which can be amplified in the attractor space, damages can be detected by 
studying the amplified change of the attractor trajectories. In this paper, distances of attractors 
between a health system and a damaged one are used to describe the system change, and hence to 
detect damages. Distance of two attractors between a health system and a damaged one can be 
expressed as 

i i
A A

i
Dis = −∑ H D     ( 1, 2,i n=  )                    (3) 

Where i
AH  and i

AD  are two discrete points in attractor space for a healthy structure system 
and a damaged structure system respectively. Superscript i is the serial number, means the ith 
point, n is the point number, while subscript A stands for the attractor space. i

AH  and i
AD  can 

be further be expressed as 1 2( , , , )i i i i
A mh h h=H   and 1 2( , , , )i i i i

A md d d=D  , where m is the 
dimension of the attractor space. 
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3. MINOR DAMAGE QUANTIFICATION WITH KALMAN FILTER 
 
Kalman filtering is a power tool in the state estimating problem. It provides an efficient 
computational method to estimate the state of a process. After it was first proposed by R.E. 
Kalman in 1960, it was extensively studied and applied in many areas. In civil engineering filed, 
it is often used for the damage identification for structural health monitoring [6]. 
For a system, it has a state transfer function as 

1 1t t t t tx x w− −= Φ + Γ                              (4) 

where tx  is the state vector, tΦ  is the state transfer matrix, tΓ  is the noise effect matrix and 

tw  is the system noise vector. 
 
For Structural monitoring, we will have the observation equation as  

z t t t tx v= +H                                 (5) 

where z t is the observed vector, tH is the observation matrix, and tv the observation noise 
vector. 
 
In the application to a system identification problem, state transfer matrix can be the unit matrix, 
i.e., =tΦ Ι , while tx  is still the unknown parameter vector. If we further assume that the 
system noise is also zero, which means we only consider the noise in the observation vector, then 
the simplified Kalman filter can be obtained as 

1ˆt tx x −=                                       (6) 

1t t−=G P                                      (7) 

ˆ ( )t t t t t tx x z x= + −B H                           (8) 

t t t t t= −P G K H G                              (9) 

1= ( )T T
t t t t t t t

−+B G H H G H R                     (10) 

1= ( )T T
t t t t t t t

−+B G H H G H R                     (11) 

where tP  is the state vector covariance matrix, while tR is the covariance matrix of the 
observation noise vector. 

ˆ ˆE[( )( ) ]T
t t t t tx x x x= − −P                       (12) 

  E[( )( ) ]T
t t t t tx x x x= − −G                      (13) 

E[ ]T
t t tv v=R                                (14) 

 
For a structure, its motion equation is 

y y y F+ + =M C K                            (15) 



Where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and F is the out 
excitation force vector. 
 
In our previous study, the case when only structural stiffness is unknown and need to be 
identified while mass and damping of the structure are known was identified using the Kalman 
filter (wan et al., 2013). Satisfied results were achieved. In this paper, however, the case when 
mass, stiffness and damping of the structure are all unknown is further studied. In this case, the 
structure with all parameters unknown actually becomes a black box. M, C, and K are all need to 
be identified. For identify them using Kalman Filter method, other parameters in Equation 15 
should all be known. Fortunately, y can be easily and precisely captured by install 
accelerometers on the structure, y  and y  actually are the velocities and displacements, which 
can be derived based on the acceleration data. While outer force F of the structure is the 
inputted Lorenz signal which is deterministic and unknown. Thus y , y , y  and F  are all 
observed values, and therefore Equation 15 can be used as the observation equation in time 
marching integration scheme. 
 
Since { }yk  can be transformed into[ ( )]yΟ K , where [ ( )]yΟ  is a matrix composed from the 
components of displacement vector of the damaged structure while K  is the vector indicating 
the stiffness of the structure. Similarly, ( )M y  can be transformed into[ ( )]yΟ M , C{ }y can be 
transformed into[ (y)]Ο C . Then Equation 15 can be rewritten as 

[ ] F
K
C
M

OOO =















⋅)()()( yyy                    (16) 

Let 

[ ]( ) ( ) ( )y y y=H O O O                        (17) 

 
 =  
  

M
X C

K
                               (18) 

 
Then Equation 16 can be further expressed as 

= ⋅F H X                              (19) 
Which shows that outer force vector F  can be the observed vector and H  is the observation 
matrix as indicated in Equation 5. X is the parameters which can be identified by Kalman filter. 
 
The above Equations are based on the three observation quantities of displacement, velocity and 
acceleration, corresponding to the three quantities, mass, damping, and stiffness, which actually 
are need to be identified. In this case, observation matrix H  is non-singular. However, in some 
cases, we can hardly get all required observations, say , we can only get the acceleration 
observation data. In this case, observation matrix H  then becomes singular. 
 
Considering the Newmark-Beta method for the motion equation ( 1/ 6β =  ) 
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∆
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Then the Kalman filter Equations can be written as 
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 t t t ty H x v= ⋅ +                             (24) 

Where 
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  =  
 
 
  

                          (26) 

 
Obviously, observation matrix H  is singular. With the Equations (23-26), due to the special 
characteristics of these matrices, C and K actually can not be updated. However, tz  and tz  
can be updated, which means with only acceleration, velocity and displacement can be predicted 
with such kalman filter. Combining with the first kalman filter which is defined by Equations 
(16-19), C, and K can be updated, with the velocity and displacement values being updated and 
fed back step by step. Thus even when the observation is not enough, required quantities still are 
possible to be identified combine more than one kalman filters. 
 
4. SIMULATIONS 
 
In order to verify the approaches introduced above, corresponding simulations are conducted. A 
model of a four-story structure is used for the numerical simulations. The mass of each floor is 
assumed to be concentrated to a mass point as shown in Figure 4, and defined to be 100kg 
respectively, while the stiffness of each floor is defined to be 1000N/m. An exciter is placed on 
the top of the structure to produce chaotic signals, as depicted in Figure 4. The exciting force is 



simulated using a chaotic signal, which is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Simulation model 
 
 
 
 
 
 
 
 
 

Figure 5. Input chaotic excitation 
 

 
 
 

 
 
 
 
 
 
 
 
        (a) Acceleration responses               (b) Details of the difference 
Figure 6. Acceleration at the top floor for the intact structure and damaged structure with 

5% stiffness decrease at the 3rd floor column 
 
Structural responses subjected to the input force are calculated using newmark-beta method. 
Figure 6(a) shows the accelerations for the intact structure and damaged structure with 5% 
stiffness decrease at the 3rd floor column. With the structure being damaged, its responses also 
slightly changed accordingly. Figure 6(b) shows the details of some differences. Theoretically, 
by studying the response difference under the same excitations, the change of the structural 
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status can be detected. However, such difference of the responses are very small when the 
damage degree is very small, which makes the determination of the health status extremely 
difficult. 
 
In this case, attractors are therefore applied since it can amplify the difference. Figure 7 shows 
the constructed attractors from the time series of the acceleration responses at the top floor for 
the intact structure and damaged structure with 5% stiffness decrease at the 3rd floor column. 
 
 
 
 
 
 
 
 
 
 
 

(a) Intact structure                          (b) Damaged structure 
Figure 7. Reconstructed attractors from accelerations at the top floor for the intact  

structure and damaged structure with 5% stiffness decrease at the 3rd floor column 
 
From the figure, even though difference can be observed, it can hardly tell us how large the 
difference is. Attractor distance is therefore applied to indicate the difference extent. Figure 8 
shows the attractor distances to the intact structure for all floors when the 1st floor is damaged. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Attractor distances to the intact structure when the 1st floor is damaged 
 
While figure 8 shows the single damage case, Figure 9 shows the multi-damage case. It shows the 
attractor distances to the intact structure when the 2nd and 3rd floors are damaged, with respected 
to different damage degree. In this paper, for simplicity, we just show the case when only two 
columns are damaged with the same damage rate for these two columns. For other multi-damage case, 
the results are actually similar. 
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Figure 9. Attractor distances to the intact structure when the 2nd & 3rd floors are damaged 
 
From Figure 8 and 9, it can be found that the attractor distance of each floor between the intact 
structure and damaged structure increases strictly in accord with the increase of the damage rate. 
Thus the degrading of the structure due to the damage can be indicated by a relative large 
attractor distance. Relatively larger the distance, more severe the damage.  
 
With the study of the attractor distance, we can easily detect the structural deterioration. 
However, such detection is mainly the Qualitative analysis. It can hardly clearly tell us how large 
the deterioration is, and also can not distinguish the single damage case or multi-damage case. 
Therefore, identification of structural parameters and their deterioration is further implemented 
with the Kalman Filter. Table 1 shows the structural parameter identification results using 
Kalman Filter when the 3rd floor is supposed to be damaged with the damage degree increased 
step by step. It can be found that the identified structural parameters are very close to the real 
model parameters, especially for the stiffness K and mass M. Values of C in Table 1 actually are 
the values for the diagonal element of the damping matrix with the damping ratio 0.05. With the 
stiffness decreased step by step, identified stiffness is decrease accordingly at the corresponding 
column. It shows that with the structural parameter identification, the deterioration extent of the 
structural and also its location can be determined. 
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5. CONCLUSION 
 
Minor damage detection and quantification is very important for the structural health monitoring. 
In this paper, minor damage is proposed to be detected and identified using the chaotic analysis 
and Kalman filter. Simulations are conducted. Chaotic excitation is used as the external force and 
is put on a 4-story lumped mass shear model. The attractor distances between the reconstructed 
attractor of the structure in intact status and in damaged status are calculated and analyzed. It is 
found that the attractor distance will be increased once the structure has damages, even the 
damages are very small. Therefore it can be used for minor damage detection. However, it is 
rather a qualitative detection than a quantitative detection. Also it can not distinguish the single 
damage case and the multi-damage case. For the quantitative analysis, Kalman filter is 
introduced. Analysis results show that it can identify the structural parameters and then trace the 
minor damages and their development in the structure. The proposed approach will be helpful for 
detecting and evaluating minor damages at the early stage for the structural health monitoring. 
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