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Abstract 
 
In the wake of development of enabling technologies in sensors and computer hardware, there are many 
opportunities to generate, store and transmit measurement data. Structural identification methodologies support data 
interpretation, thereby improving the quality of decision making for infrastructure management. Multiple model 
candidate identification is a method for systematically including the intrinsic ambiguity of inverse engineering tasks 
as well as measurement and modeling errors. The multiple model approach also leads to rational methodologies for 
designing sensor networks. Data mining methods assist in model interpretation and support the incremental 
measurement – interpretation cycles that are common in large scale civil-engineering structures. Damage scenario 
detection can be improved through inclusion of damage models. Engineer-specific interaction methodologies have 
the potential to provide the support that is necessary to extend the usefulness of performance based engineering. 
Challenges include avoiding the data interpretation bottleneck, appropriate management of errors, development of a 
comprehensive framework for sensor network design, and ensuring that engineers are not overwhelmed by the 
complexity of coping with multiple models. 
 
 
INTRODUCTION 
 
Developments in sensor technology and advanced computing methods are creating opportunities to benefit from the 
potential of structural identification. In addition, lower costs and more flexible hardware are increasing practical 
viability. Structural identification techniques are becoming kernel enabling methodologies for implementation of 
performance based engineering (maintenance as well as design) and this will lead to more economical management 
of infrastructure. In the longer term, there is potential for more efficient design, increased safety and innovative 
solutions as structures become self aware. 
 
However, there is much work to do. For example, in conventional structural identification, a model is identified 
through matching measurement data with model predictions [1-4]. This involves identifying values of model 
parameters that minimize the difference between predictions and measurements. These methods are based on the 
assumption that the model that best fits observations is the right model. This assumption is flawed due to the 
following reasons: (1) system identification is an inverse problem and thus, several models can predict the same 
measurement data, and (2) errors in modeling and measurement [5-7] may compensate such that the model that best 
predicts the measurements is not the best model for diagnosis, evaluation and prediction.  



This paper begins by highlighting key technologies that provide opportunities related to structural identification. 
Opportunities such as recently developed approaches in multiple model identification are then described and this 
leads to a description of new methods for sensor network configuration and definition of spaces of possible models. 
Such spaces are delimited by an error threshold that is determined from combined considerations of measurement 
and modeling errors. Challenges include an accurate definition of such thresholds, characterization of model spaces 
and optimal sensor-network configuration. Efforts to meet these challenges are providing engineers with 
methodologies to rationally design sensor networks and to interpret measurement data accurately for improved 
structural management.  
 
 
ENABLING TECHNOLOGIES: MEASUREMENT SYSTEMS AND COMPUTING 
HARDWARE 
 
Two barriers to more general use of structural identification methodologies, lack of useful measurements and 
expensive computer hardware, are falling. Over the last ten years, there has been a tremendous increase in the 
number of ways engineers are able to monitor structures. New embedded sensors, advances in photogrammetry, 
increased accuracy of global positioning system (GPS) measurements are just a few of many examples.  
 
Perhaps the most important advances for structural health monitoring are the developments in optical measurement 
techniques [8]. Use of optical measurements avoids many difficulties associated with drift in electrical signals over 
time and damage during thunderstorms. This advantage has made feasible measurement of long-term phenomena 
such as creep and temperature induced deformation in full-scale structures. Values of measurements due to these 
effects often have the same order of magnitude of measurements due to short term effects. Adding to this advantage, 
long-gauge optical-fiber sensors make possible measurement of deformations in non-homogenous materials (such as 
reinforced concrete, fiber reinforced polymers and wood). These advantages have greatly increased the number of 
possibilities for measuring important aspects of the behavior of structures. 
 
It is not enough to have high-tech equipment that accurately measures the behavior of full-scale structures in 
changing environments. Data needs to be stored and communicated. Increases in capacities of computers have made 
possible cheap storage and transmission of the gigabytes of data that are generated by continuous measurement 
systems on full-scale structures. Improvements in robustness of equipment have made storage and transmission 
more reliable. As flash memory chips replace hard drives, robustness will increase further. Finally costs of 
computing equipment continue to fall and with the introduction of wireless data acquisition, costs are decreasing 
further. 
 
Therefore developments within fields of measurement technology and computer hardware are enabling the 
necessary conditions for increased importance of structural identification methodologies. Over the past twenty years, 
applicability of structural identification concepts has thus moved from restricted scopes, such as short-term 
measurements on steel laboratory structures, to general applicability in structural health monitoring for a wide range 
of structures.  
 
 
MULTIPLE MODEL STRUCTURAL IDENTIFICATION 
 
Since measurement, data storage and transmission are no longer barriers for implementation of structural-
identification methodologies for structural management; an important contributing factor to the current “bottleneck” 
is data interpretation. If data cannot be interpreted properly so that good decisions can be made, the most hi-tech 
sensor that feeds into the most advanced data acquisition system is useless. When there is weak support for data 
interpretation, engineers take the risk of drowning in data. This can be worse than no data at all. 
 
The key task when interpreting data involves identification of the structural behavior model that is best able to 
predict current and future performance. As mentioned in the introduction, this is an inverse engineering task and 
therefore, possible solutions are rarely unique. Errors in measurement and in modeling further increase the number 
of behavior models that could explain a set of measurements. Taking inspiration from over twenty years of research 
into model based diagnosis in other engineering fields, for example [9], there are good opportunities to recognize 



explicitly multiple models and reason within a model space in order to improve the accuracy of structural  
identification. 
 
As a first approximation, engineers often use the behavior model that was used during the design stage. 
Uncertainties in the original model, such as values for E and I in concrete structures, are then used to explain 
differences between model predictions and measurements. Typically, such approaches conclude with back-
calculated “effective values” for the uncertain variables.  
 
Unfortunately, design models are usually not appropriate for making sense of measurements. Since they are 
formulated prior to erection, they often contain conservative assumptions related to aspects such as support 
conditions and connection behavior. Such conservatism is entirely acceptable during the design stage since the 
impact on cost and other design objectives is almost always low. However, the assumption that design models can 
be used for interpreting measurements, a task for which they were never intended, can be justified only on very 
simple structures. 
 
Rather than choosing a single model and updating parameter values, recent proposals have studied generation and 
subsequent filtering of candidate models. Figure 1 is a framework for multiple model system identification [10]. The 
framework links four activities: (1) model generation, (2) data mining, (3) measurement system design and (4) 
engineer-computer interaction.  

 

 
Figure 1. A framework for multiple model system identification, from [10]. 

 
Modeling assumptions and measurements are input starting data for the framework. With this information, the 
model generation module generates a candidate model sets using stochastic search [11] and this set is analyzed using 
data mining methods. Modeling assumptions define the parameters for the identification task. Model parameters 
may include parameters such as elastic constant, connection stiffness and moment of inertia. Each set of values for 
the model parameters corresponds to a model of the structure. The model generation module uses an objective 
function to evaluate the quality of candidate models. The objective function E is defined as follows [10]. 
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ε is the error which is calculated as the difference between predictions pi and measurements mi. τ is a threshold value 
that is obtained from a probabilistic combination of measurement and modeling errors. The set of models that have 
E = 0 form the set of candidate models for the structure.  
 
Most structures remain in service for decades. While deterioration and other time dependent phenomena may have 
an influence on the best behavior model, sudden collapses are rare. Typically engineers proceed iteratively in cycles 
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of measurement and structural identification over a period of several years. This is analogous to a medical doctor 
who waits for the results of one set of tests before recommending more. Therefore, multiple model structural 
identification tasks usually start with large initial sets of candidate models. Models in these sets are then 
progressively filtered out using additional measurements until one of the following two conditions are met: i) the 
correct model is identified; ii) variations in the remaining set of models have no influence on the structural 
management decisions that are required. 

 
DATA MINING 
 
Data mining methods assist data interpretation through grouping together models that are similar and through 
indicating opportunities for further measurement. More specifically, data mining techniques are used to extract 
relationships between models and to identify clusters of similar models in multi-dimensional parameter spaces. For 
example, Principal component analyses (PCA) have been used to reveal clusters of similar models when no clusters 
were apparent using raw values of model parameters [12, 13]. 
 
Detection of clusters in data is not a trivial task when many parameters are under consideration. Recent work has 
employed the k-means algorithm [13]. Also a new score function is proposed to help determine the number of 
clusters in data [14]. This function is unique in so far as it is able to indicate the presence of a single cluster.  
 
In spite of much progress in recent years, data mining often identifies spurious relationships between data and 
clusters that do not realistically separate data into meaningful groups. Therefore, data mining algorithms must be 
accompanied by advanced user interfaces so that engineers can visually interpret results and guide the process 
through introducing context specific information. More detail is given in the section after the next one. 
 
 
SENSOR NETWORK DESIGN 
 
Identification of multiple candidate models leads to opportunities for design of a sensor network in a structure. 
Three factors are of interest: sensor placement, the parameters being measured and sensor accuracy. Inspired from 
previous work [15], Robert-Nicoud et al proposed a greedy algorithm for sensor placement using Shanon’s entropy 
function [16]. This was extended and compared with a global search algorithm [17]. Recently, Kripakaran et al. [18] 
investigated the inclusion of damage scenarios in the model sets. 
 
Since sensor networks may be designed prior to construction, there are no measurement data to determine the initial 
set of candidate models. Instead, a model set is generated randomly from the total number of possible models. Users 
fix the number of models required to be in the set. These models are then used to predict values of potentially 
measured values at possible measurement locations. The best place for a sensor is proposed by [16] to be where the 
entropy is highest. Since entropy is a measure of information disorder, this is where knowledge of the measured 
parameter would be most effective in identifying the correct behavior model. 
 
Two options are possible at this point. The first option involves incrementally placing a sensor at positions of 
highest entropy where the first location selected is not changed in subsequent iterations. This is called a greedy 
algorithm. The second option is where global search is used to fix sensor locations such that the total entropy is 
highest for a given number of sensors. In this option, the locations selected for n sensors may be different from the 
locations fixed for n+ 1 sensor. The second option is better for initial sensor configuration while the first option is 
most appropriate for incremental measurement – interpretation cycles on existing structures. 
 
Damage scenarios can be included during initial sensor configuration through ensuring that the initial model set 
includes models of a damaged structure. The number of damage models included in the total model set relative to 
the number of other models depends on the importance of detecting damage and the likelihood of damage occurring. 
Alternatively, sensor configuration could be run two or more times using no-damage and damage scenarios to 
determine the union set of each run. 
 
Development of decision support for sensor selection and sensor accuracy is underway at EPFL. Sensor accuracy is 
included in the width of the sensor location band as described in [16]. Initially, sensor selection involves maximum 



entropy comparisons with results from various sensor types. Global search using sensor type (measured parameter) 
as a variable and entropy in the objective function may be feasible for structures of medium complexity. 

 
 
ENGINEER-COMPUTER INTERACTION 
 
The model generation module, data mining module and sensor network design module require various amounts of 
engineer-computer interaction. For example, this module includes visualization tools for displaying results from the 
data mining module. Providing decision support for engineers requires special consideration since they work best 
when they see familiar representations. For example, each engineering field has developed special symbols that 
represent import ideas and concepts [19]. Perhaps the biggest challenge is providing support for reasoning in the 
context of multiple models that contain several parameters. 

 
PERFORMANCE-BASED STRUCTURAL ENGINEERING 
 
In structural engineering, much has been written about performance over the last decade. Ideas in performance-
based structural engineering (PBSE) are not at all new. Structural engineers have always been concerned about 
performance and many historical developments in the field, such as plastic design and avoiding progressive collapse, 
have their roots in the desire to consider explicitly structural performance. Design and subsequent management 
concepts in other fields have also focused on performance and concepts such as “fitness for purpose”, “damage 
tolerance” and “fail safe engineering” reflect performance strategies. 
 
Most recent work in structural engineering involves proposals for more explicit aspects of PBSE on the 
requirements side of the basic inequality that is used for both design and management. Ignoring load and resistance 
factors, this is: 

 
Effects of actions ≤ Requirements (or performance criteria)  (2) 

 
Since for many performance criteria, such as deflections and earthquake resistance, requirements have traditionally 
had weak scientific support, this work contains many valuable proposals. However, increasing the granularity of 
only one side of an inequality implicitly assumes that the other side (in this case, the effects of actions) is 
sufficiently well known.  
 
In many situations, the influence of factors such as inaccurate design assumptions, corrosion, settlement of supports, 
cracking and changing conditions at joints mean that more specific performance criteria has no impact on the quality 
of decision making. The success of PBSE is, in such cases, dependent on accurate estimates of the effects of actions 
using realistic models. Measurements become unavoidable for accurate model identification. Therefore, the 
opportunities and challenges that are discussed in this paper are also valid for extending the applicability of PBSE 
concepts. 

 
 
CONCLUSIONS 
 
There are many opportunities and challenges associated with structural identification.  Opportunities are: 

• Every year, sensors become cheaper, more versatile, more robust and more present in structures. 
• Computer storage capacities, processing power and communication possibilities are no longer a hindrance 

to the success of structural identification. 
• Generation of multiple model instances provides predictions within tolerance limits to account for 

modeling and measurement errors in a systematic fashion. 
• Data mining techniques are useful for grouping models into clusters thus providing information regarding 

possible model classes and good opportunities for subsequent measurement. 
• Promising sensor placement methods are global stochastic search for initial placement design and 

clustering data for input into a greedy algorithm for additional measurements. Placement methods are 
evolving into methods that also assist in the selection of sensor type and accuracy. 



• A multiple-model approach allows for damage identification when damage scenarios are included in sensor 
configuration. 

• Engineer computer interaction (ECI) methodology has the potential for providing support to enhance the 
quality of decision making. 

• More generally, there is much potential to extend the usefulness of concepts related to performance based 
structural engineering, thus improving structural management and eventually providing opportunities for 
innovative designs.  

 
Challenges related to structural identifications are: 

• Data management and interpretation (not sensor and computing technologies) have become the dominant 
causes of the structural-identification bottleneck.  

• Measurement interpretation is an inverse engineering task that may have many possible solutions. While 
models used at the design stage are usually appropriate for design, they are rarely useful for interpreting 
measurements on existing structures. 

• The presence of errors in modeling and in measurements further increases the number of possible solutions. 
Single value optimization methods, traditionally used in model updating strategies, are often inappropriate. 

• Engineers lack a generally accepted and systematic methodology for selecting sensor type, quantity, 
accuracy and position 

• When confronted with decision making related to interpreting and filtering multiple candidate models, 
engineers can be overwhelmed by the complexity of coping with multiple models. 

 
Meeting these challenges requires cooperation between research groups who are active on an international scale so 
that all opportunities can be investigated in the widest possible range of civil engineering contexts. The Structural 
Identification Committee at ASCE is actively moving in this direction and as a result, much progress is expected 
over the next decade. 
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