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Abstract 
 
Health monitoring and evaluation of civil and aeronautical structures is becoming even more important to guarantee 
structural performance, safety and economic reliability. Modern designs and materials pose new challenges and 
more sophisticated methods are required to satisfy operational conditions and management demands. Recent sensor 
technology achievements open up the possibility for thousands of different types of sensors for innovative 
monitoring techniques. While most damage identification methods are based on the modal analysis, this paper 
presents a different approach based on the analysis of the wave propagation behavior with an adapted minimum rank 
perturbation theory. 
 
Two solution schemes for the inverse problem with regularization are described; the first is based on dynamic 
programming, while the second on the wavelet convolution; both with a general finite element model. Results show 
that different levels of structural monitoring are possible (global or detailed). From the same data, a fast monitoring 
analysis can be done to identify damage and then, a detailed study of the damaged sub-region is possible for a full 
evaluation. The wavelet convolution solution scheme allows the use of time limited spatially distributed data setting 
off an opportunity for whole field data sensors for structural monitoring and damage evaluation. 
 
 
INTRODUCTION 
 
Modern civil and aeronautic structures are getting more complex, new concepts and materials are increasingly being 
used, and environmental or operational conditions are more demanding. Moreover, structures are important 
components of integrated systems (i.e. highway bridges in integrated transport systems), where monitoring is 
necessary, and in some cases, in real time1. At the same time, sensor technology has grown and expanded very many 
possibilities on measuring, evaluation and control of engineering systems; multiple sensors of different types are 
now affordable and we can envisage the use of thousands of embedded sensors in smart structures2,3. Under these 
operational conditions, health monitoring of structures pose different challenges and alternatives for innovative 
theory and experimental schemes4.  
 



 

Structural evaluation to identify damage, deterioration and/or operational anomalies in modern complex civil is 
essential to determine their safety, operational reliability and residual life1. Traditionally, most of the damage 
detection programs are based on visual inspections, which are costly and difficult due to the inaccessibility to most 
of the parts of the structure. Furthermore, internal damage can not be detected and no quantitative value of the 
damage and the residual strength are given. Recent health monitoring systems have included different 
nondestructive testing techniques, but most of them are highly localized and no global evaluation of the structural 
condition is possible5. Until now, it is being recognized that the vibration and modal analysis techniques are the only 
ones with the potential to serve for global description1,6. In these cases, health monitoring is done through changes in 
the vibration signature characterized by the natural frequency, damping ratios, and mode shapes. In general, an 
undamaged model (typically a Finite Element Model) is used as a reference to compare the dynamic responses of 
the model with the experimental measurements from the real structure. Many algorithms have been developed for 
this purpose and generally are classified under four different categories: optimal-matrix updates, sensitivity methods, 
eigenstructure assignment techniques, and minimum-rank perturbation methods7. 
 
In reaction to the limitations of the modal analysis based algorithms8,9, an inverse force identification method, called 
Sub-Domain Inverse method (SDIM), was adapted for the identification of damage. The SDIM is based on the 
analysis of the wave propagation within the structures10,11, thus it requires few experimental tests, and it can solve a 
large number of unknowns. The sub-structural analysis is also possible without loss of generality and furthermore, it 
is size tunable to macro or micro complex structures. Appropriate sensors distribution defining sub-regions, permits 
unambiguous identification of the damaged sub-regions and from the same data, different data mining strategies 
may be used for global monitoring and to zoom into the structure. 

 
 
STRUCTURAL CHANGES AS RESPONSE VECTORS 
 
Within a structural context, damage appears as a change of stiffness and/or mass. Also, a stress wave propagation 
phenomenon in a structure is affected by these structural changes and hence, it could become very good carrier of 
this information. It is in this context, that we define change of stiffness and/or mass as damage and use wave 
propagation responses in order to detect it.  
 
Using the finite element method notation, the changed condition is represented as a perturbation of the stiffness and 
mass matrices form the undamaged state as [ ] [ ] [ ]∆KKK D −= 0

, [ ] [ ] [ ]∆MMMD −= 0
, then the governing equations 

for the damaged condition become as: 
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The vector { }D  clearly has the information about the damage and we therefore call it the Damage Response Vector 
(DRV). If somehow, we can determine { }D  then it is a direct (but subtle) process to extract the desired damage 
information. As an illustration, consider the case with only a stiffness change: [ ][ ] [ ]Du ∆K = . 
 
Where the time and space information of { }u(t)  and { }D(t)  were arranged as the rectangular arrays [ ]u  and [ ]D , 
respectively. This set of equations to determine [ ]∆K  is ill-conditioned; however, we can solve it using the same 
approach as used in the Minimum Rank Perturbation Theory12. This gives the solution representation as: 
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The inner matrix inversion is accomplished using singular value decomposition (SDV) and taking only a sub-set of 
the singular values. All the required information such as damage location, extent of stiffness reduction, and so on, is 
contained in the matrix [ ]∆K . 
 



 

The key issue in the damage detection scheme is the ability to identify the vector { }D . The components of this 
vector are associated with the nodes’ degrees of freedom (DOF) of the FEM model and therefore, constitute a large 
set of unknowns. Note that it appears in Equation (1) as a force vector similar to { }P ; indeed, one interpretation of 
{ }D  is as a collection of externally applied loads acting on the undamaged structure to give a response similar to the 
damaged structure. Our problem therefore reduces to one of determining a large set of unknowns applied forces – it 
is precisely for this situation that the Sub-Domain Inverse Method was developed. 
 
 
FORCE IDENTIFICATION INVERSE PROBLEM 
 
A typical forward problem in engineering entails determining the system response when both the system and the 
inputs are known. Inverse Problems are situations where some aspects of the system are unknown (material 
properties, boundary conditions, behavior of a non linear joint, for example) while other aspects are known and we 
attempt to use measurements to determine the unknowns. A common characteristic of inverse problems is those are 
notoriously ill-conditioned and require a level of sophistication far beyond the corresponding forward problems. 
Most of the engineering problems are of the inverse type, such as the force identification problems. 
Consider a structural system represented by the following dynamic equation: 
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Identification of vector { })P(t  is possible from experimental measurements from time-space limited sensors such as 
accelerometers, or space-time limited sensors such as Moiré imaging. Thus, two different approaches are 
investigated: the first is based on dynamic programming and the second on the wavelet convolution. 
 
The probability of achieving a good inverse solution is enhanced if the number of unknowns can be reduced. This 
would be possible if we could just isolate the sub-region or sub-domain of interest (the aircraft wing form the 
fuselage, the loose joint from beams, and the center span from the rest of a bridge). Unfortunately, this introduces a 
set of unknowns associated with the boundaries. The idea of the SDIM is shown in Figure 1; the sub-domain has, in 
addition to the primary unknowns of interest, a set of additional unknown tractions that are equivalent to the 
remainder of the structure. 

 

t - unkown tractions
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Full domain with many unknowns

 
 

Figure 1. Sub-domain with the system unknowns plus the unknown boundary tractions. 
 
The significant advantage of analyzing a sub-domain with unknown tractions on the boundaries, over analyzing the 
complete domain is the opportunity to remove non linearities from the analysis. For example, a sloshing fuel tank in 
an aircraft or a sunken foundation pile would simple not be included in the sub-domain. It may also be that the 
totality of unknowns in the complete system is itself unknown again justifying a sub-domain. A further advantage is 
that it gives us a formal way of scaling our analysis; that is, global analysis as well as detailed analysis is possible 
within the same framework. 
 
 



 

Dynamic Programming for Force Identification 
Force identification from Equation (3) is solved using an algorithm based on Bellman’s dynamic programming in 
conjunction with a general finite element program to supplement with additional information the measured data. 
Solution is calculated from an error function with regularization terms to give robustness to the solution originated 
by the ill-conditioning of the inverse problem. In general, the error function is: 

 

{ } [ ]{ } { } [ ]{ }[ ]∑
=

+−−=
N

1n
n

T
nn

T
n gHgQudWQudg)u,( λE    (4) 

 
Where, [ ]Q  is the matrix that relates the measured data { }nd  with the degrees of freedom of the system { }nu ; { }ng is 
the vector of the sub-set of forces to be identified; [ ]H  is the regularization matrix, and λ is the regularization 
parameter according to Tikhonov theory. A two step solution is initiated with a backward iterative scheme; the 
second step calculates the forces using a forward iteration process. Detailed description of the equations and how 
they are solved are included in References 10 and 11. Key feature of this solution scheme is that complete time 
information is required for the measured data. 
  
Force Identification Through the Wavelet Deconvolution. 
The basic idea of the wavelet deconvolution is to include information from space-time limited sensors. In this case, 
the force is expanded in terms of the wavelet function )(tmφ and the displacements at each node are expanded in 
terms of the wavelet functions ),( txmψ , which are the responses at the node due to a force )(tmφ . Then,  
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To solve the inverse problem, the following function error is used 
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Where A  and B  are positive operators; A  measures the error between the experimental data with the simulated 
data; and B  is a stabilization term for the time and space regularization. Minimizing E with respect to P yields: 

[ ]{ } { }   ûP G =              (   7) 
where,  
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A simple triangular form for the wavelet function )(tφ  behaves as a filter for high frequency undesired components 
and to keep the information within the frequency range of interest. Also, the inverse deconvolution is not needed 
while it is obtained directly from the solution13. When the number of unknowns is very large, a direct matrix 
inversion method for Equation (7) turns out to be time consuming; then the Quasi-Toeplitz structure of matrix 
[ ] G can be used to adapt fast (Levinson14) o super-fast15 algorithms, which are of O(n2) or O(nlog2n) respectively. 

 
 
MULTILEVEL HEALTH MONITORING EXAMPLE 
 
For demonstration of the SDIM potential for monitoring and damage detection, two different scenarios are 
simulated. The first, is a bidimensional truss structure fully instrumented, while the second is a plate structure 
partially instrumented in which all the nodal displacements are measured, but none of the angular rotations. 
 
Bidimensional Truss with Complete Sensor Instrumentation 
Consider a two dimensional truss structure divided into 6 sub-regions, instrumented with bi-directional sensors at all 
nodes and with highly located damage in one sub-region (Figure 2). 

 



 

 
 

Figure 2. Fully instrumented truss. 
 
Assume that monitoring is run under controlled conditions, that is, the external excitation force and the undamaged 
structural conditions are known. In this case, the proposed monitoring strategy is based on the following: 
a. All sensor data are recorded (70 bi-directional sensors). 
b. Sub-region limiting sensors and one internal sensor in each sub-region are only considered for the first step, that 

is 28 bi-directional sensors (indicated in Figure 2), which corresponds to the 40% of the total recorded data. 
c. DRV’s are calculated for the limiting sub-region degrees of freedom and for the internal nodes associated to the 

internal sensors (56 DOF out of 140). 
d. All nodes directly related to damage sub-regions will show none zero DRV’s. Particular attention is given to the 

corresponding DRV’s of the 6 internal nodes (see Figures 3a and 3b). 
e. Once damaged sub-region is identified (sub-region 6), a second analysis step is done for damage evaluation. 

Thus, considering all the data from the 18 sensors in that sub-region, the DRV´s are calculated for all the 36 
DOF of the corresponding nodes. 

f. Once the DRV’s are obtained, the sub-region perturbation stiffness matrix [ ]∆K  is calculated using Equation (2). 
In this case, matrix inversion using the SVD was calculated with 20 singular values. Figures 4(a) and 4(b) show 
a comparison of the calculated and exact perturbation matrices [ ]∆K . 
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(a) “x” direction    (b) “y” direction

 
Figure 3. DRV´s for both directions for the internal nodes in each sub-region. 

 
 

  
(a) Calculated    (b) Exact 

 
Figure 4. Perturbation stiffness matrices for the truss sub-region 6. 



 

For very large structures, this process can be divided into several steps to gradually zoom from the whole structure 
to the damaged sub-regions. In this first example, the structure was divided into six sub-regions and damage was 
immediately identified from the DRV´s of the monitoring internal sensors in each sub-region.  
 
Partially Instrumented Plate 
Most practical cases are not fully instrumented due to sensor limitations. This is the case of a structure that can have 
complete displacement sensors in the either “x”, “y” and/or “z” directions, but no sensors for angular rotations. 
Having no information from the nodal angular rotations is equivalent to assume zero torsional DRV’s for those 
nodes. This limitation affects the performance of the SDIM because when none zero DRV’s are neglected, the 
algorithm compensates their effect on other DRV’s, leading to misleading results. In some cases, when the neglected 
DRV’s are small, damage analysis can be appropriate to some extent. 

 
 

Figure 5. Partially instrumented plate structure. 
 

In our second example, damage is simulated in a plate structure (Figure 5) with 3 DOF per node, z displacement and 
“x” and “y” rotations. The structure is fully instrumented with displacement sensors at all nodes and experimental 
conditions are under known excitation load and initial undamaged conditions.  
 
Following a similar procedure as previous example, an initial step identifies the damaged sub-region considered 
monitoring of the DRV´s of the six internal monitoring nodes. Figure 6 shows the DRV´s in the “z” direction at the 
monitoring nodes, indicating that the damaged sub-region is number 4. 
 
The second step to quantify damage uses the displacement sensor information of the complete plate to calculate the 
“z” DRV´s for all the nodes (45 forces). Figures 7(a) and 7(b) show the computed and exact diagonal terms of the 
perturbation stiffness matrices and, although the damaged element can be easily identified for having the largest 
magnitudes (DOF 26, 31 and 32), the neighboring elements show a small stiffness reduction as if they were 
damaged (DOF 21, 27, 33, 36 and 37). This effect, within a 20% error, is originated by assuming zero torsional 
forces. At the same time, the damage magnitude with respect to the exact perturbation matrix is within a 50%, as if 
damage were distributed over the neighboring elements. 

 

 
Figure 6. Damage Response Vectors (DRV’s) for the monitoring internal nodes. 

 
 



 

  
(a) Calculated    (b) Exact 

 
Figure 7. Diagonal terms of the perturbation stiffness matrices for the plate sub-region 4. 

 
DISCUSSION AND CONCLUSIONS 
 
The capacity of the SDIM to handle very many sensors and unknowns makes it a very flexible and advantageous 
scheme for structural health monitoring and damage detection. Structural partitioning and sub-domain can be 
adapted as necessary and, as long as there is enough information from the sensors, analysis is possible in many 
forms from a fast general evaluation to a complex detailed analysis. Unknowns or non linearities can be removed 
from the analysis and substituted by boundary unknown tractions of the sub-domain that can be easily identified 
from the SDIM. 
 
The damage response vectors, once they are identified by the SDIM contain sufficient information for the damage 
evaluation regardless the severity or location, assuming that damage manifests itself as a change of stiffness or mass. 
Multilevel analysis for damage evaluation can be done and the monitoring strategy depends on the size and type of 
structure, as well as the instrumentation available. Main feature of this scheme is that at each step the damage 
analysis is simpler than considering the whole structure and measured data. When the structure is fully instrumented, 
damage evaluation is straight forward, but sensor limitations lead to inaccurate results as it can be seen from the 
plate analysis example.  
 
Although in this study only time data is used from discrete distributed sensors, it is possible to extend the SDIM to 
handle spatial distributed data from imaging sensors. Preliminary results with adapted techniques demonstrate that 
the use of a wavelet deconvolution can be used with Moiré images taken at a discrete number of times13. 
Modification of the SDIM is possible but it requires the adaptation of fast and super-fast Toeplitz-like solvers and 
further research is needed. On the other hand, it enables the use or many other sensors of different type with spatial 
information. It is believed that the use of spatial distributed data will enhance results for sensor limited cases. 
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