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Abstract 
  
In this paper, a structural damage identification method (SDIM) is developed for plate-like structures.  This Method 
is derived using dynamic equation of undamaged/damaged plate, in which local change in flexural rigidity is 
characterized utilizing a damage distribution function. The SDIM requires to modal data in the intact state and 
frequency response of damage state where most of vibration based damage identification techniques requires to 
modal data in both states. Change of mode shapes of damaged plate are approximated as a linear combination of 
mode shapes of intact plate and are considered in dynamic equation of damaged plate. Constant Coefficients of 
linear combination have been evaluated using perturbed equation of motion and the damage distribution function. 
Two strategies for making the inverse problem damage identification are introduced in connection with damage the 
present SDIM: (1) by using sensitivity of natural frequencies and (2) by using FRF-data, a sufficient number of 
equations can be derived to detect magnitude and location of damage. The feasibility of presented method is 
validated through some numerically simulated damage identification test taking into account random noise in FRF-
data. 
 
 
INTRODUCTION 
 
Occurred damage within a structures leads to change of structural vibration characterizes and can be used in turn to 
detect, locate and quantify existence structural damage. The finite element model (FEM) update techniques have 
been proposed in the literature [1]. The existing experimental-data-based SDIMs can be classified into several 
groups depending on the type of experimental data used to detect, locate, and/or quantify structural damage. They 
include changes in modal data [2–5], frequency response functions (FRFs) [6, 7], strain energy [10], transfer 
function parameters [11], flexibility matrix [12], residual forces [13]. As a drawback of FEM-update techniques, the 
requirement of reducing FEM degrees of freedom or extending the measured modal parameters may result in the 
loss of physical interpretability and the errors due to the stiffness diffusion that smears the damage-induced localized 
changes in stiffness matrix into the entire stiffness matrix.  
 



 

The modal-data-based structural damage identification method (SDIM) has some shortcomings. First, the modal 
data can be contaminated by measurement errors as well as modal extraction errors because they are indirectly 
measured test data. Second, the completeness of modal data cannot be met in most practical cases because they often 
require a large number of sensors. On the other hand, using measured FRFs may have certain advantages over using 
modal data. First, the FRFs are less noise contaminated because they are directly measured from structures. Second, 
the FRFs can provide much more information about damage in a desired frequency range than modal data are 
extracted from a very limited number of FRF data around resonance [14]. Thus, the use of FRFs seems to be very 
promising for structural damage identification.  
 
Identifying ways to minimize the experimental measurement errors, structure model errors, and the damage 
identification analysis errors has been an important issue in most structural damage identification researches. Some 
researchers have investigated the damage-induced changes in natural frequencies, mode shapes, and curvature mode 
shapes with varying the location and severity of a damage. However, very few attentions have been given to the 
effects of the change of mode shapes, damage-induced coupling of vibration modes and the higher vibration modes 
omitted in the analysis on the accuracy of predicted vibration characteristics of the damaged beam, from a damage 
identification viewpoint.  
 
The purposes of the present paper are: to develop an FRF-based SDIM, to investigate effects of the mode shape 
changes on the accuracy of the predicted vibration characteristics of damaged plates, and finally to verify the 
feasibility of the present SDIM through some numerically simulated damage identification tests.  
 
 
THEORY 
 
Dynamic Equation of Motion of Intact Plate 
 
The dynamic equation of motion for a plate is expressed as follows: 
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where w(x, y, t) is the flexural deflection, f(x, y, t) is the external force applied normal to the surface of plate, D is the 
flexural rigidity for the intact plate, and m is the mass density per area. In Eq. (1), the dot (.) indicates the derivative 
with respect to time t. Assume that a harmonic point force is applied at a specified point (xF, yF) as[9,15]: 
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where oF is the amplitude of harmonic point force and ω  is the excitation (circular) frequency. The forced 
vibration response of an intact plate can be assumed, by superposing M natural modes as follows: 
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where mq  are the modal coordinates and mW  are the natural modes satisfying the eigenvalue problem of the intact 
plate: 
 
 mmm WmWD 24 Ω=∇             Mm ,...,1=                                                             (4) 
 
and the orthogonally property: 
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where  mΩ are the natural frequencies of the intact plate and δ is the Kronecker symbol. Substituting Eq. (3) into 
Eq. (1) and applying Eqs. (4) and (5) yields the modal coordinate equations as: 
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where mf are the modal forces defined by : 
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Solution of Eq.(6) results modal coordinate )(tqm  as: 
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DAMAGE DISTRIBUTION FUNCTION  
 
In the damage state stiffness reduction has been expressed as a local piece-wise uniform thickness reduction as 
shown in Fig. 1.  
                                                      

 
Fig. 1. A piece-wise uniform damage distribution 

 
The damage has the constant magnitude 01 <<− Dδ  over a small finite segment of area yx4 , with its center at 

),( dd yx .The local damage can be represented by: 
                              
  [ ][ ])()()()(),( yyHyyHxxHxxHdyxD dddd +−−+−−= δδ             (9) 
 
where, )( axH − is the Heaviside’s unit function defined as: 
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MODE SHAPES CHANGES 
 
The dynamic equation of motion for the damaged plate by considering the introduced piece-wise uniform damage 
distribution function is expressed as follows: 
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Assuming that mode shape changes of the structure to be a linear combination of the mode  shapes of the intact 
structures would result in the following[14]: 
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Substituting Eq. (12) in the eigenvalue equation of the damaged plate yields: 
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Pre-multiplying Eq. (13) by kW  for km =  , integrating over the area of the plate and considering the orthogonally 
property of the mode shapes results: 
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Also derivation of Eq. (5-1) for nm = yields: 
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and therefore mmα vanished. 
 
 
DYNAMIC EQUATION OF MOTION OF DAMAGED PLATE 
 
By evaluating the mode shapes change using Eq. (12), the eigenvalue equation of the damaged plate is expressed as 
follows: 
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Multiplying Eq.(11) by mW , integrating over the area of the plate and considering the orthogonally property yields: 
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And similarly Frequency Response function of the damaged plate when change of mode shape has been taken into 
account can be expressed as: 
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Using the introduced definition for damage distribution function integral of equations (17) and (18) can be divided 
to N sub integral, where N is the number of considered damage zones. Therefore change of the natural frequencies 
and Frequency Response Function can be expressed as nonlinear function of ),( yxDδ . Solving this nonlinear 
function for ),( yxDδ , using an optimization criterion will yield the location and severity of damage.  
 
 
NUMERICAL RESULTS 
 
To investigate ability of the presented method a square simply support isotopic uniform plate has been considered. 
As shown in Fig. 2 the plate has been divided into 5 zones along x and y axes which generates 25 unknown 
parameters. To avoid adverse effect of symmetry of the plate on results, the plate has been divided into unequal 
zones. Two cases of damage have been considered; in the first case, the flexural rigidity of the zone 19 has been 
reduced by 20 percent and in case two the flexural rigidity of the zone 7 reduced by 20 percent. 
 

 
 

Fig. 2. Divided zones of Example plate 
 



 

To investigate effects of neglecting mode shape change on the accuracy of the frequency changes evaluation, these 
changes are evaluated by Eq.(17) in to cases: first by considering mode shapes change (second part of Eq.(17) ) 
second by omitting this term.  Impact of excluding (including) of the mode shapes changes for the simulated damage 
cases are compared in Fig.3 and 4. 
 

 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5
Mode No.

Er
ro

r o
f F

re
qu

en
cy

 C
ha

ng
e 

%

Excluded
Included

 
Fig. 3. Evaluation of Frequency Change (Case 1) 
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Fig. 4. Evaluation of Frequency Change (Case 2) 

 
Using the presented equation to evaluate change of the natural frequencies and Frequency Response Function (five 
first natural frequency and Frequency Response Function measured at two point), damages of the simulated cases 
have been predicted by simulated noisy data. Results of detected damage are shown in Fig.5 and Fig.6. 
 
 



 

 
Fig. 5. Predicted Damage of Case 1 

 
As the results show in this SDIM damage can be predicted using noise polluted data. By changing the position of 
excitation force and the measurement location higher number of equations can be derived. Therefore damage cases 
can be detected more accurate. This method is applicable to other type of structure such as beam or composite plate 
using analytically evaluated mode shape of these structures.   
 

 
Fig. 6. Predicted Damage of Case 2 

 
 
CONCLUSIONS 
 
In this paper, an FRF-based SDIM is derived from dynamic equation of motion for damaged plate. The appealing 
features of the present SDIM are as follows:  

a) The modal data of damaged structure are not required in the analysis.  
b) A large number of equations can be readily derived by varying the excitation frequency as well as the 

response measurement point. The feasibility of the present SDIM is verified through some numerically 
simulated damage identification tests. It is shown that presented method is able to predict damage using 
noisy modal data.  
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