
The 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure 
Vancouver, British Columbia, Canada 

November 13-16, 2007 
 
 

 
 
 
 
 
 
 
 

                      
 
 

STRUCTURAL DAMAGE IDENTIFICATION  
USING MODE SHAPES     

 
A. Esfandiari 

Dept. of Civil Eng., Amirkabir Univ., Iran   
Mina Asadbeigi 

Dept. of Civil Eng., Amirkabir Univ., Iran   

 
 

Abstract 
 
In this paper, a new global algorithm for damage assessment of structure by using finite element methods and modal 
data. Damage is considered as a change in the structural stiffness parameters. To remove drawback of incomplete 
measurement, unmeasured parts of mode shapes of a structure are characterized as a function of the structural 
parameter and the measured parts of mode shapes. Elemental damage equations, which relate to partially measured 
mode shapes of damaged structures to changes of structural parameters are developed using incomplete measured 
mode shapes through a condensation method. These equations are solved to find change of structural parameters 
utilizing an optimization method. Monte Carlo simulation is applied to noise polluted modal displacements to 
investigate the sensitivity of this method to measurement errors. The algorithm is verified in numerical simulation 
environments using a planer truss. Results show the good ability of this method to detect any damage of structures in 
presences of noise in acquired data.   
 
 
INTRODUCTION 
The subject of structural damage detection has been receiving a growing amount of attention from researchers in the 
civil, the mechanical and the aerospace fields of engineering. A large number of structural failures have been 
reported over the past decades, causing considerable loss of life and property. Therefore, early detection, 
monitoring, analysis, and repair of a damaged structure, are vital for the safe performance of the structure. Dynamic 
damage detection methods are most common of system identification methods. Detailed literature review has been 
provided by Doebling et al [1] and Stubbs et al [2]. References cited in these reviews proposed many different 
methods for identifying and localizing damage from vibration response measurements. The majority of the cited 
references rely on the finite element modeling process and/or linear modal properties for damage diagnosis.   

 
Dynamic damage detection methods are more sensitive and accurate in comparison to static damage detection 
methods and are developed by many researchers. These methods use eigenvalues and eigenvectors of a structure to 
assess its damage. Lim and Kashanagi [3] developed the best achievable eigenvector concept. In this method a 
measured mode shapes compared with the best achievable eigenvector based on a candidate set of assumed damage 
cases to detect damage in structures. Kabe [4] developed a method for stiffness matrix adjustment using modal test 
data and preserved structural connectivity information of a mass-spring system. Lim [5] proposed a systematic 
method that provides precise identification of damage location and extends when exact measured modes at every 



 

finite element DOF are used.  Also a procedure was presented to perform damage detection with inaccurate and 
incomplete measured modes. Kim and Stubbs [6] proposed the damage index method of a structure which is 
computed by using mode shape before and after the damage of structure.   

A mode-based damage identification method is proposed by Ren et al [7] to predict location and severity of damage 
based on the work done by Araújo dos Santos [8]. In this work, it was demonstrated, when multiplying the damaged 
eigenvalue equations with the damaged or undamaged modes, provides more equations than the strain energy-based 
method which will guarantees the damage localization. Hemez and Farhat [9] applied their element-by-element 
sensitivity update method to a 10-bay truss data. They examined some specific issues to surround the location of 
damage in this structure, including the selection of the type and the number of finite elements, the modeling of the 
cantilever boundary condition, the selection of the modes used in the update, and the limitations of the sensitivity-
based technique.  

As a drawback of FEM-update techniques, the requirement of reducing FEM degrees of freedom or extending the 
measured modal parameters may result in the loss of physical interpretability and errors due to the stiffness diffusion 
that smears the damage-induced localized changes in stiffness matrix into the entire stiffness matrix. To overcome 
this drawback Bakhtiari-Nejad et al [10] proposed a damage detection method using incomplete measured mode 
shape. They expressed mode shape as a function of stiffness by assuming one of the modal displacements to be 
equal to one and derived a set of equations which related modal displacement of damaged structures to changes of 
structural parameters. Using an optimization criterion, the derived equation was solved to obtain changes of 
structural parameters. The proposed method applied to a frame and a truss structure using noisy simulated data.  

In the present work, the unmeasured part of an eigenvector of a structure is expressed as a function of measured part 
of the mode shape, frequency, stiffness and mass matrix of the structure. Based on the work of Ren et al (2001) an 
element level damage equation was characterized using mode shapes of intact structure and partially measured mode 
shapes of damaged structure. To overcome the problem of undetermined equations, an optimization criterion is used 
to solve equations for estimating the structural parameters. Noise in the measurement is simulated by adding a 
proportional random error to the exact data obtained form finite element models of damage structures.  

THEORY  
 
Mode Shape Equation  
 
For an undamaged structure the modal characteristics of structure are described by the eigenvalue equation: 
    
             0)( 2 =− ii MK φω                                                                                     (1) 
 
where )( nnK ×  and )( nnM × are stiffness and mass matrices of structure respectively; iω  and iφ are the thi  
eigenvalue and mode shape of structure respectively and n  is the number of degrees of freedom. Degrees of 
freedom of a structure can be portioned into two categories; measured and unmeasured parts. Therefore the stiffness 
and mass matrices of a structure can be rewritten as:  
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where subscripts a and b  indicate the degrees of freedom associated to the measured and unmeasured location of 
structure respectively. By using Eq. (2), Eq. (1) can be rewrite as:  
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Eq. (3) can be expanded as: 
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Using Eq. (4-b) the unmeasured parts of mode shapes can be calculated as: 
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Eq. (5) expressed the unmeasured parts of mode shapes of structures as a function of stiffness matrix (structural 
parameters), mass matrix and natural frequencies. 

Element Damage Equations  

Using the eigenvalue problem of the intact structure as given by Eq. (1), and substituting the eigenvalue problem of 
the damaged, the l1th mode shapes can be written as:  
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Pre-multiplying Eq. (6) by T

iφ , transposing and rearranging it yields:   
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Using the eigenvalue problem of an intact structure as given by Eq. (1) and substituting iMφ  by i
i

Kφ
ω 2
1  in the 

right hand side of Eq. (7) results:  
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expanding the left hand side of Eq. (8) and rearranging, it yields:  
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Eq. (9) expresses the relation between the measured modal parameter of a damaged structure and change in the 
stiffness matrix of a structure. This equation requires a complete measured mode shape of a structure which is time 
consuming and expensive for most of the structures. Also in structures which have translational and rotational 
degrees of freedom, measurement of rotational degree of freedom needs expensive equipment. By using Eq. (3), Eq. 
(8) can be rewritten as:  
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Transpose of Eq. (10) can be expanded and rearranged as: 
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where liR is the vector of residual. Using Eq. (5), the unmeasured portion of a mode shapes of damaged structure 
can be computed based on the measured part, therefore Eq. (11) can be rewritten as:  
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Using nu  mode shapes of intact structure and nm  mode shapes of damaged structures, nunm× equation will be 
derived. The solution of the element damage equations for the unknowns allows locating and quantifying damage. 
These two types of damage equations expressed by Eq. (5) and Eq. (12) can be used either independently or 
combined. The advantage of combining two equations is that more equations are available for damage detection. To 
investigate the efficiency of the proposed method to handle element damage equation, in this work only these type 
of equations have been used in the damage detection process. 
 
 

OPTIMIZATION FUNCTION  

Using Fox formulation [11], change in the mode shape of a structure can be expressed as a linear combination of 
mode shapes of intact structures as:                                                   
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Then the eigenvalue problem of the damaged structure can be described by:  
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Imposing Eq. (12) in to Eq. (14) yields:  
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where, lE is a vector of errors due to approximation of Eq. (12). There is some error due to approximated 
expression used for computing mode shape change. Eq. (15) can be simplified as:  
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Summing these errors over the number of measured modes nm , provides the error produced by all nm equations as:  
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If the stiffness matrix of a damaged structure is close to the stiffness matrix of an intact structure, produced error by 
Eq. (17) must be minimized; therefore,  the introduced objective functions can be expressed as ( TPAAK δδ = , P  
is the structural stiffness parameters, A is connectivity matrix of the structure [10]): 
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where PPTδδ is the norm of vector of parameters change,  which will be described later. Since change in the 
structural stiffness parameter is always negative, an inequality constraint is introduced as:           
                                                         
   0<Pδ                                                                                                            (19) 
 
The optimization problem can now be stated as: 
 
   })({ PgMin δ                                                                                                 (20) 
 
subjected to the nonlinear equality constraints given in Eq. (12) and inequality constraints of Eq. (19). This problem 
can be solved by the MATLAB optimization toolbox using the FMINCON routine. This routine implements the  
Sequential Quadratic Programming (SQP) to minimize the nonlinear cost function subjected to linear and nonlinear 
equality and inequality constraints. SQP converts a nonlinear minimization to a linear minimization using a Hessian 
matrix of cost function and gradient of nonlinear constraints. Since, this problem must be solved iteratively and, like 
any iterative algorithm, the estimators need initial values for unknown parameters to start the iteration. The choice of 
initial value controls the convergence of the algorithm and dictates, to some extent, the computational effort required 
to achieve a solution. In these,  paper origin ( 0=Pδ ),  is considered as an initial trial for the optimization problem. 
It may increase the number of required iterations to solve optimization, but did not influence uniqueness of results.  
Since, inequality constrained of Eq.(19) bound the search domain of optimization criteria and therefore the results is 
unique. Examination of other random initial trial provides that the initial trial do not influence results of this study.  
 
 
NUMERICAL VERIFICATION  
 
         A one-storey-one-bay frame as shown in Figure 7 is considered to verify the damage identification method 
described in this paper. The FEM analysis is carried out to simulate the experimental data by using two-node beam 
elements. The number of nodes and elements are 16 and 15 respectively. The unknown parameters are flexural 
rigidity of elements, EI, where I is the moment of inertia of the cross-sectional of beam elements.  
 

 



 

 
   FIGURE 7:.  PLANER FRAME STRUCTURE 

 
Here four damage cases are considered to investigate capabilities of the present method in detection of occurred 
damage of flexural structure. In the first damage case, the stiffness of element 10 was reduced by 20 percent. In the 
damage case number two the stiffness of elements 12 and 20 were reduced by 20 and 40 percent respectively. In the 
damage case three the stiffness of elements 3, 9 and 18 were reduced by 30, 20 and 40 percent respectively. In the 
damage case four, the stiffness of elements 7, 12 and 20 were reduced by 20, 30 and 20 percent respectively.  

First, the partially measured mode shapes of damaged structures and the fifteen first mode shapes of intact structures 
has been considered in the damage detection process and has been assumed only translational degrees of freedom 
can be measured. Nodes number 6,10,15,11 and 19 are selected as measurement locations to measure the 
translational displacements.  

In the numerical examples, noise is simulated by adding a series of pseudorandom numbers on the theoretically 
calculated frequencies and mode shapes. In this study, 1 percent proportional uniform noise applied to model 
displacement and natural frequencies has been considered noise free. Next, in order to investigate the effect of input 

error on the parameter estimates, the kth component of the noisy measured eigenvector for the kth m
lkφ  can be 

computed of the lth  simulated noise free eigenvector 0
lkφ  as: 
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where k
lζ  is a random number. The results of Monte Carlo’s analysis for truss and frame models are given in 

Figures 6 to 9. 
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        FIGURE 16.  PREDICTED DAMAGE OF FRAME         FIGURE 17.  PREDICTED DAMAGE OF FRAME 
                                   SCENARIO 1 (NOISY DATA)                                    SCENARIO 2 (NOISY DATA) 
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FIGURE 18.  PREDICTED DAMAGE OF FRAME         FIGURE 19.  PREDICTED DAMAGE OF FRAME 

SCENARIO 3 (NOISY DATA)                                                           SCENARIO 4 (NOISY FREE DATA) 
 
As results show, this method is capable of detection of the magnitude and location of damaged elements with noisy 
data. The damaged elements are identified by an acceptable accuracy where as an additional slight damage is shown 
on intact element due to noise presence in mode shapes measurements. Maximum error of parameter identification 
of the frame example is less than 5 percent at damaged elements and less than 10 percent at intact elements. Without 
using element damage equations to obtain the same results at least two first mode shapes of frame examples are 
required [11]. Since amplitude of mode shape decreases at higher mode shape, measurements of higher mode shape 
are more noise contaminated which adversely affects the results of damage detection. Efficiency of  the proposed 
method can become more significant by increasing the number of unknowns in large structures.  

CONCLUSION 

This paper presents an approach for damage detection in structures utilizing incomplete measured mode shapes and 
natural frequencies. The unmeasured part of mode shapes of structures is characterized as a function of structural 
stiffness parameters and measured modal displacements. More equations have been obtained using element damage 
equations which need complete mode shapes. This drawback is solved by presenting mode shape equations and 
dividing structural degrees of freedom to measured and unmeasured parts. An optimal criterion is used to solve these 
sets of equations to obtain changes of structural parameters. Results of a planer frame represent the ability of this 
method to evaluate the severity and location of damage using exact and noise polluted data. Results show that this 
method is above to detect structural damage using a few modal data and measurement efforts.   
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