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Abstract 
 
In general, monitoring systems consist of one or more sensor networks. These sensor networks produce a very large 
amount of information that has to be processed by data acquisition stations and decision routines. It is extremely 
difficult, and sometimes impossible, to include each individual obtained value in the assessment process. Therefore, 
there is a need for procedures and techniques to reduce the amount of monitored data. 
 
Data processing by use of prediction functions seems to be a promising procedure, since only data violating or 
indicating a necessary update of the used prediction functions are needed for processing. In consequence, the 
prediction functions provide instead of raw monitored data the basis for the reliability assessment of engineering 
structures. Therefore, a clear defined procedure for the definition of prediction functions is required. In addition, 
Bayesian updating has to be used in order to update the parameters of the prediction functions. 
 
The objective of this paper is to present a procedure for the initial set up of prediction functions, the definition of 
necessary monitoring periods, and the inclusion of additional monitored data by using Bayesian updating. The 
proposed approach is presented on monitored data of the I-39 Northbound Bridge over the Wisconsin River, 
obtained from the ATLSS Center at Lehigh University. 
 
 
INTRODUCTION 
 
In general, monitoring systems applied to bridges contain a network of sensors. A common feature of monitoring 
systems is the need of handling the continuous supplied data. Several authors proposed the use of Data Stream 
Management Systems DSMS (Appadwedula et al. 2005) to process the amount of unbounded data by running a 
continuous long-term monitoring program. DSMS have to channel the data obtained by the sensor networks. 
 
Typical queries on monitoring of bridge structures are about constraints on values obtained by sensors, also called 
value constraints. Such constraints can be, for example, strains in a steel structure. 



There is also a great interest in constraints evaluating the differences between the values measured by sensors. This 
type of constraint is called window-joint constraints (Grewal and Andrews 1993). They reflect a temporal 
relationship for two values to be joined. Measurements of very different values at approximately the same time 
could reveal the existence of violations of the observed physical quantity or malfunctioning sensors. 
 
In general, for monitored structural systems it is possible to assign prediction functions to sensors. These functions 
can be updated only when they differ significantly from the predicted values. This concept allows the reduction of 
the monitoring frequency and the associated costs caused by query processing. For example, the corrosion of rebar 
in a concrete deck will probably evolve during the years following predictable patterns, Marsh and Frangopol 
(2007). 
 
Predictions can be reasonably used in various structural applications. For example, an inclinometer on a structure 
could provide not only the current angle of a structural component but also its vector of movement or expected 
trajectory. Similarly, the values measured by a temperature sensor positioned on a structure are expected to change 
continuously during the years. The strains in a bridge girder and the corrosion in rebar are values that can be 
predicted by using prediction functions. The importance of prediction functions increases when the values to be 
measured are expected to change according to predefined patterns or when unexpected violations should be 
detected.  Babu and Widom (2001) propose to develop prediction functions based on measured quantities by 
sensors. This concept could be used to reduce the data acquisition and number of communicated data by processing 
only the significant violating monitored data. Prediction functions could be obtained in a variety of ways (Miles and 
Shevlin 2001, Grewal and Andrews 1993, Teply et al. 2006, Stehno et al. 1987) and thresholds of structural 
properties can be specified by testing, by material laws or by users. 
 
Sensors of bridge monitoring systems measure, in general, physical quantities continuously or at a certain sampling 
frequency (e.g., 10 times per day). The measurements are associated with a unique identifier. The prediction Sj is 
related to the measured data obtained from sensors as 
 

Sj = <Si, PhyQi, Tj , fpj(t)>  (1) 
 
where Si is the identifier of a sensor, PhyQi is the physical quantity it measures, Tj is the time of the update, and fpj(t) 
is the prediction function that, given a certain time instant t, retrieves the expected monitored data (Appadwedula et 
al. 2005). Eq.(1) allows estimating monitor data based on the past measurements together with prediction functions. 
Since prediction functions are key factors of this method, location and updating procedures will be presented in the 
following. 
 
 
PREDICTION FUNCTIONS BASED ON MONITORED EXTREME VALUES 
 
As monitored data are random and the interest by the development of prediction functions fp for structural 
characteristics is in most cases the description of the distribution of extreme values, there is no requirement to use all 
monitored data. Only extreme values of defined monitoring units P′  (e.g. maximum daily values) are of interest. 
The grouping of extreme values to sample sets of monitored periods P already allows an approximated location of fp 
with respect to a threshold of an investigated physical quantity. 
 
The variability and tendency of those sample sets can be computed by using chart methods as proposed by Levine et 
al. (2001). These methods indicate if the dispersion of the consecutive sample sets are caused by chance or by other 
processes, or in other words, if the monitored processes are stable or unstable. Since in engineering there are a lot of 
environmental factors influencing the monitored data (temperature, solar radiation, traffic etc.) this check will yield 
in most cases to unstable processes. Therefore, the application of only chart methods, as used for production control, 
for the derivation of prediction functions is not efficient. Extreme values Ep recorded during a monitoring period P  
of the previously mentioned sample sets provide a powerful information for the derivation of prediction functions.  
 
There are numerous prediction functions for the description of degradation processes not taking into account the 
instantaneous information of monitored data. Most of them are based on advanced analytical formulations (Stehno 
1987, Teply 2006). However, for the derivation of prediction functions fp, from monitored data, polynomial 
approaches of 1st, 2nd or 3rd order seem to be useful 
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where ak = coefficients, w = order of the polynomial function, and t is the time.  
 
The coefficients ak can be obtained by using the following consecutive steps: 
 
Step (a); computation of the necessary duration of monitoring periods P according to the allowable probability p per 
monitoring unit P′  of violating the threshold established by the prediction function fp by the monitored data with a 
confidence level C. Formulations for these constraints can be derived from the theory of acceptance sampling (Ang 
and Tang 2007) as follows:  
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where SP = selected allowable violating samples of fp per monitored period P and Φ-1(.) =  the inverse standard 
normal cumulative distribution function. 
 
Step (b); determination of the Pre-polynomial coefficients ka′  (associated with ka  of Eq. (2)) by mean square fitting 
to the extreme values Ep of the monitoring units P′  per monitoring period P; 
 
Step (c); movement of the prediction function fp towards the maximum value of Ep such that no more than Sp 
monitored extreme values Ep violates fp to fulfill the defined requirements of Step (a). This adaptation is carried out 
mostly via a correction of 0ka =′  to 0ka =′′  which yields: 
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where ka ′′  = coefficients after adjusting the prediction function fp with respect to the extreme values Ep. 
 
Step (d); the above defined criteria for the location of fp do not restrict the value of the difference ζ between the 
prediction function and the violating extreme values Sp. The restriction of these differences ζ within each P can be 
done by the previously mentioned chart methods discussed in Levine et al. (2001).  
 
This procedure yields finally to the coefficients presented in Eq.(2), based on the demand that the difference 
between Ep (including Sp) and fp  is caused by chance. More details about the steps are provided in Strauss et al. 
(2007). 
 
The adaptation of the prediction functions (coefficients ak) can be done in each monitoring period by using the 
monitored data of former periods P (e.g., a prediction function of 1st order needs at least two monitoring periods to 
include the past developments of the monitored data). Fig. 1, for instance, shows the prediction function fp

(1,2) 
derived from the first and second monitoring period (P = 22.3 days) of the monitored data taken from the I-39 
Northbound Bridge. This bridge, over the Wisconsin River, was built in 1961 in Wausau, Wisconsin, USA. The total 
length of the bridge is 196.04 m (643.2 ft). It is a five span continuous steel plate girder bridge. The monitoring of 
this bridge included the strain/stress behavior of specified structural components. Fig. 2 shows for the sensor CH15 
the monitored extreme data per day. Details about the further targets and results of the monitoring program are given 
in Mahmoud (2005). As it can be seen from Fig. 1, fp can be used (a) to predict the strain/stress distribution behavior 
at the end of the monitor period or even at the end of the lifetime, and (b) to select possible interruption periods of 
monitoring as discussed in Strauss et al. (2007). 
 
Since strain/stress values are not providing structural reliability measures, the reliability assessment should be based 
on a more general information. Therefore, there is the need to include the monitored physical quantities (e.g., 
strains) into a reliability format such as the ß index format.  



This can be done by limit state considerations such as (a) g1(X1) = resistance threshold – prediction function of load 
effect, (b) g2(X2) = resistance threshold – load effect based on all monitored data, or (c) g3(X3) = resistance threshold 
– load effect based on maximum value of monitored data. Fig. 3 shows these three approaches for a mean resistance 
threshold fy = 377 MPa and a coefficient of variation (COV) = 0.07. The standard deviations assigned to the 
prediction function, to the monitored data, and to the extreme monitored value are computed from the extreme 
values of one monitoring period P (e.g., σ = 9.2 MPa for P(1).) 
 

ADJUSTED PREDICTION FUNCTIONS 
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Figure 1. Prediction functions fp

(1) and fp
(1,2) of the monitoring periods P(1) and P(2) obtained from the monitored 

extreme values 
 

SENSOR CH15: X - CHART of MONITORED DATA
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Figure 2. Monitored extreme values per day during the whole monitoring period (data taken from Mahmoud et al. 

2005) 



SENSOR CH15 - GAGE: ADJUSTED PREDICTION FUNCTION 
for p = 0.10 and C = 0.975  
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Figure 3. Reliability index computed from the extreme values of the monitored data, and the prediction reliability 

index function 
 
 
 
 
BAYESIAN UPDATING FOR PREDICTION FUNCTIONS 
 
Monitored data are similar to statistical data which can be more or less accurate. In consequence, prediction 
functions derived from monitored data for the reliability assessment cannot be considered as exact. Such functions 
and their specification factors derived from monitored data are therefore a priori information. 
 
A priori predictions at specified points in time of a structure, e.g. at the end of lifetime, can be derived by short-time 
functions (i.e., difference between the time horizon considered and time when the data is processed ∆t, say ∆t ≤ 30 
days) or long-time functions (say ∆t > 30 days). Long-time predictions can be improved by utilizing prior prediction 
functions described by mean Yµ′  and standard deviation Yσ ′ and short-term monitored data. This procedure is called 
Bayesian statistical prediction or Bayesian Updating (BU). 
 
The BU procedure also provides the possibility for a continuously adjustment of prediction functions, and finally for 
a realistic assessment of the physical quantity at the end of the life time. The procedure is briefly described in the 
following. 
 
Let X be short-time values and Y long-time values of physical quantities generated from a prediction function at 
specified points in time of a structural lifetime (e.g. end of the lifetime). The associated prediction functions (e.g. 
polynomial rth order) can be obtained by mean square fitting or other techniques applied to extreme values of 
monitored data as shown above. Since monitored data are restricted in time, the mean values Xµ′ , Yµ′  and standard 
deviations Xσ ′ , Yσ ′ describing prediction functions are prior statistical information. 
 
Now suppose we are able to obtain a set of short-term monitored data for updating the prediction function. The 
objective is to use the monitored data to improve or update the long-time values X or Y. For this purpose a correction 
factor pk is calculated by comparing the new monitored and prior values of the prediction functions as follows 
(Bazant 1985): 
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where )k(
Xµ′ = the mean value of the kth prediction function, and Xµ  = mean value obtained by mean square fitting 

of the prediction function to the set of the new short-term monitored extreme data, and σX = standard deviation of 
the set of short-term monitored extreme data. The posterior (updated) mean values and standard deviations of the 
prediction functions can be obtained according to Bazant (1985) as 
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Note that if data obtained by the measurements are too remote from the prior data then BU will not provide good 
results. The above mentioned formulas are valid for normal probability distributions (Bazant 1985). 
 
This BU method was applied to the monitored data of the I-39 Northbound Bridge to evaluate the stress distribution, 
evaluated by using prediction functions, at the end of the monitoring horizon t = 97 days. The BU procedure was 
based on the continuously provided short-term monitored data of the monitoring periods P = 22.3 days. The 
procedure was as follows:  
(a) a curve fitting for a polynomial of first order was performed to the monitored extreme data for the period P(1). 
The polynomial coefficients a0 and a1 as shown in Table 1 were obtained for the first prediction function fp

(1); 
(b) the mean of the prior data Yµ′ = 34.454 MPa was computed by using the polynomial function fp

(1) at the end of 
the period P(1) = 22.3 days, and the associated standard deviation Yσ ′ = 6.64 MPa was computed from the min and 
max values of the first period as shown in Table 1. The computation was based on a rectangular distribution. 
(c) period P(2) provided the short-term monitored data for the first BU. The required Yµ and  

Yσ for the computation of pk according to Eq. (6) at the end of the Period P(2) were obtained as in steps (a) and (b) 
(d) the prior data of monitoring period P(1) together with the short-term monitored data of period P(2) provided 
according Eqs. (5), (8) and (9) the posterior data Yµ ′′  = 34.454 MPa and Yσ ′′ = 0.000 MPa at the end of the 
monitoring horizon t = 97 days. Tables 2 and 3 show the results of consecutive steps of the BU procedure for the 
used short-term data P(2), P(3) and P(4). 
 
The behavior of the computed posterior data (monitoring horizon t = 97 days) for BU performed at 44.6 days, at 
66.9 days and 89.2 days can be seen in Fig. 4. It is apparent that the updating process for the monitored data results 
in safe posterior data compared to the stress distribution monitored at the end of the monitoring horizon. In 
consequence, BU based on the pk formulation allows the reliable updating of prediction functions and provides basis 
elements for the definition of possible monitoring interrupting periods, discussed in Strauss et al. (2007). 
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Figure 4. Effects of Bayesian Updating on the mean stress predicted at 97 days 

 
 

Table 1. Characteristics of the monitored data and the prediction functions 
Polynomial Coefficients Monitored Stress (MPa) Monitoring 

Period a0 a1 max min 
P(1) 24.3 0.1042 40.0 17.0 
P(2) 25.5 0.0000 35.0 20.0 
P(3) 27.2 0.0000 33.0 17.0 
P(4) 29.3 -0.0750 32.0 12.0 

     
 

Table 2. Prior characteristics of the Bayesian Updating procedure applied to the monitoring data of the I-39 
Northbound Bridge 

Statistical Predictors 
Original fp Prior Data 

End of the Prior  
Monitoring Period 

µ'Y σ'Y µ'Y σ'Y Days 
34.45 6.64 34.454 6.640 22.3 
25.48 3.46 34.454 0.000 44.6 
27.23 4.62 25.808 8.647 66.9 
27.04 5.77 26.530 5.579 89.2 

 
Table 3. Posterior characteristics of the Bayesian Updating procedure applied to the monitoring data of the I-39 

Northbound Bridge 
Statistical Predictors  

Short-Term  
Monitored Data Posterior Data Updating Time 

µX σX µ''Y σ''Y Days 
25.5 3.5 34.454 0.000 44.6 
27.2 4.6 25.808 8.647 66.9 
27.0 5.8 26.530 5.579 89.2 

 
 
CONCLUSIONS 
 
Prediction functions are essential elements for monitoring systems. They allow the rational treatment of monitored 
data and the reduction of the monitoring effort, by using only significant violating data and/or by predicting possible 
monitoring interruption times. There are different kinds of prediction functions. Most of them are based on 
sophisticated analytical functions not taking into account the monitoring results. This paper presents an approach for 
the inclusion of monitored data in prediction functions and, therefore, in the reliability assessment. The Bayesian 



Updating procedure, applied to existing monitored data of the I-39 Northbound Bridge in Wisconsin, demonstrates 
the possibility to update the prediction functions and the determination of monitoring interruption periods. 
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