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Abstract 
 
The paper is focused on damage identification of dynamically loaded structures using methods of artificial 
intelligence, the damage and variability of material properties (stiffness) along the structure will be studied. The 
identification method based on coupling of artificial neural networks and stochastic analysis of structure for 
preparation of appropriate training set is used. Sensitivity analysis of the input parameters is the integral part of the 
method. The proposed methodology is extended towards the dynamic response of structures when results of modal 
analysis are the input parameters (frequencies, mode shapes).  
 
Damage parameters play the role of basic random variables, with the scatter reflecting the physical range of possible 
values. A random response is obtained from generated basic random variables. This set of data is used for the 
training of a suitable type of neural network. Once the network is trained, it represents an approximation which can 
be used in a way that ensures that for given experimental data, the best input parameters are provided, so that the 
calculation may result in the best agreement between experimental and numerical results.  
 
The verification of the proposed methodology is carried out using experimental data from measurements of Z24 
Bridge in Switzerland and using virtual simulation of concrete beam.  
 
 
INTRODUCTION 
 
Continuous health-monitoring of structures (bridges) is an essential part of its maintenance. Therefore damage 
localization and its level is the subject of research of both academic and industrial research groups during the last 
decade. Non-destructive testing – vibration measurements to get modal data (frequencies, modal shapes) is the most 
promising technique as it can be performed using a structure in usage. The task is based on the fact that a damaged 
structure has smaller stiffness in some parts – and this difference will affect vibration (modal data). The comparison 
of vibration of virgin (undamaged) structures and damaged structure can be used for the detection of damaged parts 
(localization of damage), e.g. Bonfiglioli et al. (2004). “The model updating method” is the term frequently used in 



identification (Huth et al., 2005, Fang et al., 2005, Deix and Geier, 2004, Teughels et al., 2002, Link, 1999, Wenzel, 
2005). “Updating” means that individual parameters of FEM model are iteratively changed in order to minimize the 
difference between experimentally measured and calculated response. A sensitivity of the response on model 
parameters is frequently used and can be directly utilized for efficient identification (Strauss et al., 2004a, 2006). 
 
The aim of this paper is to describe a methodology of dynamic damage identification based on the coupling of 
Monte Carlo type simulation and artificial neural networks (ANN). It extends a methodology of inverse analysis 
developed and applied for fracture-mechanical parameters identification (Novák and Lehký, 2004, 2005, 2006, 
Lehký and Novák, 2004, 2005, Strauss et al. 2004b). Applications to dynamic damage identification are presented in 
the paper. The methodology belongs to “Structural Analysis and Reliability Assessment” (SARA) project, 
Bergmeister et al. (2007). 
 
 
ARTIFICIAL NEURAL NETWORK-BASED DAMAGE IDENTIFICATION METHOD   
 
The proposed inverse analysis technique is based on the combination of the statistical simulation and ANN. The 
procedure can be itemized as follows: 
• The computational model of a particular problem has to be first developed using the dynamic FEM software. 

In case of dynamic damage identification identified parameters (IP) are usually values of stiffness varied 
along the structure, often Young modulus of elasticity. Measured data (MD) are modal parameters 
(eigenfrequencies, mode shapes). IP have to be selected carefully to capture MD as close as possible. 

• IP of the computational model are considered as random variables described by a probability distribution; the 
rectangular distribution is a “natural choice” as the lower and upper limits represent the bounded range of the 
physical existence of IP. However, other distributions can be used, e.g. the Gaussian one. IP are simulated 
randomly based on the Monte Carlo type simulation, the small-sample simulation LHS is recommended. The 
results are random realizations of IP (vector y, see Figure 1). A statistical correlation between some 
parameters may be taken into account too. 

• A multiple calculation (simulation) of FEM model using random realizations y of IP is performed, a statistical 
set of the virtual response p (see Figure 1) is obtained. The selection of number of simulations is driven by 
many factors, mainly by complexity of the problem (computational demand), structure of ANN and 
variability of IP. 

• Random realizations y (outputs of ANN) and the random responses from the computational model p (inputs 
of ANN) serve as the basis for the training of an appropriate ANN. This key point of the whole procedure is 
sketched in Figure 1 (here for the FEM model response in the form of eigenfrequencies). 

• The trained neural network is ready to give an answer to the key task: To select the best parameters IP so that 
the calculation may result in the best agreement with MD, which is performed by means of the network 
simulation using MD as an input. This results in an optimal set of parameters yopt. 

• The last step is the results verification – the calculation of the computational model using optimal parameters 
yopt. 

 
 
 



 
 

Figure 1. A scheme of stochastic training of ANN for dynamic damage identification 
 

 
METHODS AND SOFTWARE TOOLS 
 
The problem of inverse analysis and damage identification is integral part of SARA project. The methods and 
software tools are described in SARA Part I paper (Bergmeister et al., 2007). Here only methods and tools relevant 
for ANN-based dynamic damage identification are highlighted more. Basic methods are: simulation of Monte Carlo 
type called Latin Hypercube Sampling (McKay et al., 1979), sensitivity analysis based on non-parametric rank-order 
correlation (Iman and Conover, 1980), ANN – classical feed-forward neural network, multi-layer-perceptron (MLP) 
(e.g. Cichocki and Unbehauen, 1993).  
 
Multi-purpose software for any user-defined problem of the inverse analysis has been developed. It is based on the 
integration of software for statistical, sensitivity and reliability analyses FReET (Novák et al., 2007), and a neural 
network software DLNNET (Lehký, 2007). SOFiSTiK FEM software (SOFiSTiK AG, 2004) was used for dynamic 
analysis providing frequencies and mode shapes for identification purposes.  
 
 
NUMERICAL EXAMPLES 
 
Concrete Beam 
The beam tested by Bonfiglioli (2004) was considered for the numerical verification, see Figure 2. The beam was 
damaged in three stages. After each stage, dynamic measurement was carried out and eigenfrequencies of the beam 
were evaluated, they are summarized in Table 1. The first three frequencies served as input parameters (IP) for 
identification of damages along the beam. Figure 1 shows locations of the cracks experimentally obtained. At the 
first stage, the first crack at the midspan occurred (location a1 which is 1.1m from left support). At the second stage, 
the second crack occurred (location a2). Finally, the third crack occurred at location a3. The beam was divided into 
19 elements with different stiffness (MD). The aim of the procedure was to identify a decrease of stiffness in 
elements where cracks had been localized. 
 
ANN consists of 1 hidden layer with 12 nonlinear neurons and an output layer with 19 linear neurons (19 parts with 
different stiffness). The normalized stiffness has been taken into account, so the stiffness range was from 0.1 to 1.5 
(stiffness 1 means referenced stiffness level for undamaged beam). There are also 3 parameters as input to the 
network (3 frequencies corresponding to the first three modeshapes of the beam). A training set is generated using 
500 simulations of the LHS method. The training set was divided into two parts, 450 simulations were used directly 
for training the network, while 50 simulations served for testing of network overfitting.  
 
 
 



 
 

Table 1. Eigenfrequencies evaluated from experiments at particular stages 
 

Damage stage First frequency Second frequency Third frequency 
0 (undamaged) 66.0 270 612 
1 58.0 270 556 
2 52.2 259 560 
3 47.8 230 544 

 
 
After the network was trained, the first three frequencies from experimental testing were used for the simulation of 
ANN. The output of ANN is a spatial distribution of stiffness along the beam (19 values). A final dynamic analysis 
(SOFiSTiK software) was performed using these values to obtain simulated mode shapes and corresponding 
frequencies. Figure 3 shows stiffness distribution along the beam for stage 1. 
 
From the results it is visible that the identification procedure was successful and that the decrease of stiffness at the 
damaged elements was captured satisfactorily. It is necessary to mention that only first three frequencies were used 
as an input data for identification. Area with reduced stiffness is wider than one element where the crack is 
localized, the real experiment exhibits also wider fracture process zone.  

 

 
 

Figure 2. Damage locations after last damage state (Bonfiglioli, 2004) 
 
Because damage at each stage of experimental testing is significant, another study was focused on identification 
using smaller damage. For that reason we prepared a simulated experiment by SOFiSTiK software. At each stage we 
decreased the stiffness of the element corresponding to location of damage during the experiment. The simulated 
experiment used in that study makes it possible to take more frequencies into account. From the experiment of the 
simple supported beam only the first three frequencies are available. The aim of the study was to find out if 
consideration of more frequencies (here 5) will improve identification results. Because of the size of the paper the 
detailed results of both studies are not described here and can be found in Lehký and Novák (2006).  We can shortly 
say that localization of small damage is problematic using only the first few eigenfrequencies as an input for 
identification. In the case of testing more eigenfrequencies the damage was localized slightly well if five 
eigenfrequencies were considered instead of three. Also, results of the beam with the smaller damage are a little bit 
better in comparison with the previous study with only 3 eigenfrequencies. 
 
An example of damage identification using a simple supported beam has shown the potential of proposed 
identification technique based on an artificial neural network in combination with stochastic analysis of a structure 
to detect damage along the structure. Note that when using only a few frequencies, results cannot be absolutely 
perfect; they are, however, sufficient for detection.  



 
Figure 3. Stiffness distribution along the beam at stage 1 obtained using first three frequencies evaluated from 

experiment (location of crack is highlighted by arrow) 
 
Bridge Z24 
Currently, the technique described and verified above is applied for damage identification of the bridge Z24 (Huth et 
al. 2005, Teughels et al. 2002). The scheme of the bridge is shown in Figure 4. This bridge was subjected to 
different damage scenarios in 1999. Modal data are very well known and identification can be applied and verified 
with the good knowledge of damage from experiment. Tests employing different techniques of identification on this 
bridge have shown that by considering several structural responses like frequencies, mode shapes and 
displacements, the identification approach can yield fruitful results. This is a very well documented example of 
bridge dynamic testing and therefore very suitable for verification of the proposed approach.  
 
First, computational model in SOFiSTiK has been developed and tuned according to experimental measurements 
(stiffness, eigenfrequencies and modeshapes). Equivalent values for the cross-section area, the bending and torsional 
moment of inertia of the box section of the main girder were calculated. For identification purposes, the girder was 
divided into twenty parts with different bending and torsional stiffness. The girder has higher stiffness above the 
supporting piers because of higher thickness of the bottom and top slab. Examples of modeshapes are in Figure 5, 
comparison of eigenfrequencies for undamaged state obtained from experiment and numerical model is in Table 2. 
 
For damage identification the scenario with the inner right pier lowering was used (see Figure 4). Corresponding 
experimental eigenfrequencies are in Table 2. As a first step after the experiences with beam in previous example, 
only eigenfrequencies were considered as an input for identification (see Table 2). Because of troubles with 
symmetry and a high number of unknowns (20 parts with 2 stiffness values) the identification was restricted to the 
right half of the bridge where pier lowering was done. Finally, 18 stiffness values were identified (9 parts with 
bending and rotational stiffness). 
 
The neural network used for identification consists of 1 hidden layer with 8 nonlinear neurons and an output layer 
with 18 linear neurons (18 stiffness values). The stiffness range was from 25 % to 125 % of original stiffness 
(undamaged girder). There are also 4 parameters as an input of the network (4 eigenfrequencies).  In the example 
presented, a training set is generated using 500 simulations of the LHS method.  
 

 
 

Figure 4. Scheme of bridge Z24 
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Figure 5. Four modeshapes which are considered for identification – first and fifth are pure bending, third and fourth 

are combination of bending and torsion (second modeshape is horizontal bending and it was not considered for 
identification) 

 
Table 2. Eigenfrequencies for undamaged and damaged state 

 
Undamaged Damaged Modeshape Experiment Model Experiment Model 

1st 3.89 3.87 3.67 3.75 
3rd 9.80 9.81 9.21 9.38 
4th 10.30 10.42 9.69 9.95 
5th 12.67 12.03 12.03 12.26 

 
The training set was divided into two parts, 450 simulations were used directly for training the network, while 50 
simulations served for testing the network over fitting. After the network was trained, the frequencies from the 
experimental testing for damage state were used for the simulation of ANN. The output of ANN is a spatial 
distribution of stiffness along the girder (18 values, one half of the girder). The final analysis by SOFiSTiK was 
performed using these values to obtain mode shapes and frequencies.  
 
Figure 6 shows bending and rotational stiffness distribution along the girder for undamaged (reference) and 
damaged (after pier lowering) stages. Stiffness for damaged stage is a result of identification. Final eigenfrequencies 
are presented in Table 2. An example of comparison of experimental and numerical modeshape (here 4th) is shown 
in Figure 7. The results of identification using four eigenfrequencies have again shown potential of proposed 
identification technique and this type of input information. But to be honest, it is necessary to say, that the damage 
of the girder in the region of pier lowering was quite big which caused high relative changes of eigenfrequencies. 
With smaller changes the identification will be more difficult.    



 
Figure 6. Bending and torsional stiffness for undamaged and damaged beam 

4th modeshape (damaged state)

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

0 10 20 30 40 50 60 70

Distance along girder [m]

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t u
z 

[-]

Exp.: front
Exp.: center
Exp.: back
Model: front
Model: center
Model: back

 
Figure 7. Experimental and numerical 4th modeshape (combined bending and torsion) 

 
 
 
CONCLUSIONS 
  
The identification of locations and the levels of damage are very important for the assessment of residual capacity of 
structures. This is important especially in the case of concrete bridge structures. Dynamic measurements are 
performed in order to answer the questions on damage, but without robust and sophisticated numerical inverse 
analysis procedures they can provide only partial answers to damage levels and locations. The proposed approach of 
inverse analysis using virtual statistical simulation and artificial neural networks appeared to be a very promising 
technique, the efficiency was documented by numerical examples. 
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