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Abstract 
 
An evaluation approach for building structures under earthquakes is proposed to provide damage alarm and 
identification. It is a time-domain evaluation procedure capable of alarming, localizing and quantifying damage 
using limited acceleration measurements. The technique is a combination of the damage detection based on artificial 
neural networks (ANN) and the system identification using the particle swarm optimization (PSO).  
 
To implement the concept, a two-phase approach is used. In the first phase, the ANN emulator used for emulating 
the structural response is tuned to properly model the hysteretic nature of a building response. To facilitate the most 
realistic monitoring system using accelerometers, the acceleration streams at the same location but at different time 
steps are utilized. The prediction accuracy can be raised by the increment of a number of acceleration streams at 
different time steps. Damage occurrence alarm can be obtained practically and economically only using readily 
available acceleration time histories in this phase. In the second phase, damage localization and quantification can 
be achieved  by the system identification using PSO. Based on the numerical simulation for a 5-story shear 
structure, the adaptability, generality and appropriate mass of  parameters for the technique are studied. 

 
 
INTRODUCTION 

 
Structural health monitoring (SHM) has received great attention and interest to predict the onset of damage and 
deterioration of building structures because of the increasing number of aged buildings and unpredictable natural 
hazards.  
 
Most currently available damage detection methods are global in nature, i.e., the dynamic properties (natural 
frequencies and mode shapes) are obtained for the entire structure from the input–output data using a global 
structural analysis [1]. However, natural frequencies and mode shapes are not sensitive to minor damage and local 
damage. The techniques using time-domain dynamic responses are appealing and promising. Furthermore, the 
dynamic responses of structures under environmental excitation or small-scale earthquakes are very economical 
information for structural identification and health monitoring, especially in the places where small-scale 
earthquakes occur very frequently. Some information about structural parameters and dynamic properties can be 
identified by the direct use of these time-domain responses. Naira et al. proposed a damage detection and 



localization algorithm based on time series modeling [2]. There is an approach by directly using dynamic responses 
in time series without extraction of dynamic properties proposed by Xu et al. [3], which used acceleration, velocity 
and displacement time histories as the input of the emulator neural network.  This approach was improved by Xu & 
Chen[4], which only used acceleration time histories as the input of the emulator neural network, called 
acceleration-based emulator neural network (AENN) for free vibration. 
 
In this paper, the AENN is extended to forced vibration beyond the limitation of free vibration. The acceleration 
time histories, which are readily available in real structures, are only required. This is the first phase, through which 
the damage occurrence alarm can be obtained by observing the relative root mean square (RRMS) error between the 
output of AENN and the real value.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Two-phase damage evaluation approach 
 
After knowing the damage occurrence, the next phase is to determine the damage localization and quantification. 
Most currently available damage localization approaches are using pattern recognition methods to classify the 
different damage location. However, such approaches need analytical data for all damage case situations, which can 
be computationally expensive and even impossible. Therefore, the system identification is utilized. Most of the 
currently available system identification techniques are based on the frequency-domain approach; in this paper the 
system identification problem is transferred to optimization problem with the convenience for time-domain. The 
PSO is utilized. 
 
The proposed approach is carried out in two phases as briefly described in Fig. 1. The detailed and theoretic analysis 
is in the following sections. 

 
 
IDENTIFICATION OF STRUCTURAL CHANGES WITH NEURAL NETWORK BASED ON 
ACCELERATION MEASUREMENT 

 
Proposed ANN Emulator Using Acceleration Only as Inputs 
 
Here, neural networks may work as good black-box models for nonlinear systems, as well as linear systems. 
Although ARX (Auto-Regressive eXtra input) models represent linear system dynamics, it could offer some 
revelation to application of neural networks. An ARX model [5] is given by 

( ) ( ) ( ) ( ) ( )tetuqBtyqA +=                                  (1) 
 
where q  is the shift operator. Auto-Regression model ( )qA  in terms of q  is defined by  
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Similar function is defined by  
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A pragmatic and useful way to see (1) is to view it as a way of determining the next output value given previous 
observations: 
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Instead of ARX model, neural networks may represent the relationship of determining the next output value given 
previous observations and extra input. And the advantage of neural networks is that it may work for nonlinear 
systems, as well as linear systems. This representation indicates that the prediction of the response requires several 
previous time steps for response as well as inputs. 
 
So an acceleration-based emulator neural network (AENN), which can be trained to represent the mapping between 
the acceleration at different time steps, could be established as in Fig.2. Here we use acceleration time histories as 
observations. Since they are readily available in real structures, using accelerations only provides much convenience. 
The acceleration of ground is out of the consideration of neural networks’ target, so we include the acceleration of 
ground at Tk, which is already available, into the input layer of neural networks.  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. Acceleration-based emulator neural network 
 

 
The trained AENN is a non-parametric model for the structure and can be used to forecast the acceleration response 
under later earthquakes. 
 
Relative root mean square (RRMS) error, e , s defined by [6] 
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where, M  is the number of sampling data; f

mx&&  the output of trained neural networks at sampling step m ; 

mx&&  the acceleration corresponding, which is the real dynamic response under earthquake excitations at sampling 
step m . 
 
RRMS shows the change between the output of the neural network and the real dynamic response, and provides the 
information of structural damage. If this value is quite large, it would be thought that the structure is not healthy. 
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Figure 3. Improved AENN 
 
Using acceleration at time of steps k-2 and k-1 to forecast the acceleration at time step k, it would be common that 
the RRMS error is too small to be regarded as the index of a damage occurrence alarm. Therefore, the improvement 
of the approach was carried out by using the acceleration at later time steps as the output of the neural network. The 
accelerations of ground floor and the other floors in the input layer are not synchronous as shown in Fig. 3. The 
acceleration of ground has a delay of time tm ∆×  in order that the emulator neural network could forecast the 
acceleration of the each floor at later time steps. The delay tm ∆×  is considered as a tunable band corresponding to 
different structures.  

 
 
SEARCH FOR APPROPRIATE PARAMETERS BASED ON SIMULATION 

 
Acceleration stream number and ground delay, n and tm ∆×  in Fig.3, are to be decided in this section. The 
necessary number of acceleration stream, n, should make the RRMS error for health structures be a stably small 
value. The appropriate ground delay tm ∆×  should make RRMS error difference between health structures and 
damage structures be a comparatively large value. The search for these two appropriate parameters would be 
performed in this section based on numerical simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In this study, a 5-storey shear frame structure shown in Fig.4, is considered as the object structure. The structure is 
modelled as a 5 degree-of-freedom lumped mass system. The structural parameters of the 5-mass structure are 
shown in Table 1. The natural frequencies of the frame structure are 1.6521Hz, 4.1120Hz, 6.1565Hz, 8.1085Hz, and 
12.2932Hz, as shown in Table 2. The damping matrix is assumed to be Rayleigh damping, which can be expressed 
in the following form,  

KMC ba +=                                       (6) 
 
where a  and b  are selected to have damping ratios 0.005 for the first mode and 0.013 for the second mode.. 
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Table 1. Structural parameters of the object structure 
DOF 1 2 3 4 5 

Mass (kg) 4000 3000 2000 1000 800 

Stiffness (kN/m) 2000 2000 2000 2000 2000 

 
Table 2. Modal parameters of the object structure 

DOF 1 2 3 4 5 

Frequency (Hz) 1.65 4.11 6.16 8.11 12.3 

Damping Ratio 0.005 0.013 0.019 0.025 0.039 
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Figure 4.Five-storey 
frame structure 



 
Using the network training function that updates weight and bias values according to Levenberg-Marquardt 
optimization, AENN is trained firstly. The output layer includes 1 neuron. The neuron number of input layer is 
decided by n and tm ∆×  in Fig.4, and the neuron number of hidden layer is two times of that of the input layer. 
 
Here, the acceleration time histories obtained from the top floor of the 5-story shear structure under the earthquake 
ground motion of Hachinohe earthquake (May, 16, 1968, Hachinohe City) was used as training data sets. And the 
acceleration time histories under the ground motion of Northridge earthquake (Jan. 17, 1994, Northridge, California) 
was used as test data sets. These two earthquake records are shown in Fig.5. The sampling time is 0.02 second. All 
of these time histories were normalized to the length of 1. 
  
 
 

 
 
 
 
 
 
 
 

Figure 5. Earthquake records, Hachinohe and Northridge 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
During the numerical simulation, acceleration stream number, n, was changed from 1 to 15. The delay, tm ∆×  was 
changed from 0.02 to 0.2second, say, 1~10 times of sampling time. The two values, RRMS error for health structure 
and the difference of RRMS errors between health structure and damage structure, would be observed in Fig.6 and 
Fig.7, to obtain stably small value for the former one and comparatively large value for the latter one. The difference 
of RRMS errors was defined by 
 

healthdamage eee −=∆                                    (7) 
Here, the damage structure was with stiffness reduction of 20% at each floor.  

 
The prediction accuracy could be raised by the increment of a number of acceleration streams at different time steps 
to an appropriate value. The value of RRMS error would decrease to a stable value if the number of acceleration 
streams reaches the appropriate value.The error for a health structure changed by acceleration stream number and 
delay in Fig.6 was observed to search for necessary acceleration stream number firstly. In Fig.6, it could be seen that 
error for health structure would be stably small with acceleration stream number larger than 10. Therefore the 
necessary acceleration stream number is 10 in this case. For 5-story shear structure, the appropriate value of 
acceleration stream number should be 10, which is understandable and reasonable on this method bearing an 
analogy with ARX Models. 
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Figure 6. Error for health structure changed 
by acceleration stream number and delay 

Figure 7. Error difference between 
health and damage structures



The error difference between health and damage structures in Fig.7 was observed to search for appropriate ground 
delay secondly. In Fig.7, it could be seen that error difference corresponding to n=10 would be comparatively large 
with ground delay 7 times of sampling time, say, 0.14 second. So the appropriate ground delay is 0.14 second for 
this structure. The first order natural frequency of this structure is 1.6521, so the ground delay, which is 1/4 of 
structural periodic time, is suggested here.  

 
 
SYSTEM IDENTIFICATION AS AN OPTIMIZATION PROBLEM USING PSO 

 
The identification problem can be understood as an optimization problem in which the error between the actual 
physical measured response of a structure and the simulated response of a numerical model is minimized. In order to 
show this in more detail, let us consider a physical system as shown in Fig. 4 with q  outputs of acceleration 

responses M
jy for qj ,,, L21= . Let M

jy  for qj ,,, L21=  denote the value of the acceleration responses of the 
actual system.  
 
Suppose that a model that is able to capture the behaviour of the physical system is developed and that this model 
depends upon a set of n parameters, contained in a vector { }ix=x  for ni ,,, L21= . Call the newly formed model of 

the system and its parameters the identified system or candidate system, and let jy for qj ,,, L21=      denote 

the value of the acceleration responses of the identified system. At this point, let us now built the vectors M
jy  and 

jy  as 

( ) ( ) ( )[ ]Tyyy M
j

M
j

M
j

M
j L10=y                           (8) 

 
( ) ( ) ( )[ ]Tyyy jjjj L10=y                             (9) 

 
containing all sampled values of the jth output of the actual and identified systems, respectively. Now consider the 
vectors M

jy  and jy , without subindex, as the stacked vectors of all available output records for each system, 
which can be written as 

 
( ) ( ) ( ) ( ) ( )[ ]LLLL 0010 1111

M
q

MMMMM yyTyyy=y                 (10) 

 

( ) ( ) ( ) ( ) ( ) ⎥⎦
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and compute the error norm of all the simulated outputs of the identified system with respect to those measured from 
the actual system, defined as: 

 

( ) ( )( )TMM yyyyx −−=F                                  (12) 
 
In order to obtain a successful identification, the candidate system must be able to accurately reproduce the output of 
the physical system for any given input. Therefore, our interest lies in minimizing the error norm of the outputs. 
Formally, the optimization problem requires finding a vector S∈x , where S is the search space, so that a certain 
quality criterion is satisfied, namely that the error norm RS →:F  is minimized. The function F is commonly 
called a cost function or objective function. Vector ∗x  will be called a solution to the minimization problem if 
( )∗xF  is the global minimum of F  in S , or 
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The search space S  is defined by a set of maximum and minimum values for each parameter. It is conceived as an 
n-dimensional domain that is delimited by vectors maxx and minx containing the upper bounds of the n parameters 
and the lower bounds respectively or 

{ }nixxxRxS iii
n ,,,max,min, L21=∀≤≤∈=                   (14) 

 
The problem of identification thus interpreted is treated as a linearly constrained, (due to the delimited 
n-dimensional search space) nonlinear (due to the nonlinear cost function) optimization problem.  
 
Particle Swarm Optimization (PSO) 
 
Particle swarm adaptation has been shown to successfully optimize a wide range of continuous functions [7].  The 
algorithm, which is based on a metaphor of social interaction, searches a space by adjusting the trajectories of 
individual vectors, called “particles” as they are conceptualized as moving points in multidimensional space.  The 
individual particles are drawn stochastically toward the positions of their own previous best performance and the 
best previous performance of their neighbors. 
 
A population of particles is initialized with random positions xi

r  and velocities vi
r , and a function, f, is evaluated 

When a particle discovers a pattern that is better than any it has found previously, it stores the coordinates in a vector 
pi
r .  The difference between pi

r  (the best point found by i so far) and the individual’s current position is 
stochastically added to the current velocity, causing the trajectory to oscillate around that point.  Further, each 
particle is defined within the context of a topological neighborhood comprising itself and some other particles in the 
population.  The stochastically weighted difference between the neighborhood’s best position pg

r  and the 

individual’s current position is also added to its velocity, adjusting it for the next time-step.  These adjustments to 
the particle’s movement through the space cause it to search around the two best positions. 
 
An important source of the swarm’s search capability is the interactions among particles as they react to one 
another’s findings.  Analysis of interparticle effects is beyond the scope of this paper, which focuses on the 
trajectories of single particles. 
 
 
NUMERICAL VERIFICATION 

 
In order to verify the performance of the proposed methods, let us analyze the structure described in former sections 
represented in Fig. 4. The minimal output, only acceleration at floor 5, is used. In the first phase, the damage index 
increases, while the damage becomes severe, as shown in Fig. 8.   
 
To verify the performance of the second phase and compare it with other global search methods, the results obtained 
with the usage of the Simulated Annealing (SA) and Genetic Algorithm (GA) are presented in Tables 3, along with 
the results obtained with the PSO, for the sake of comparison. The unit of the stiffness value is 100kN/m. 
 
 
 



  no noise 5% noise 10% noise 20% noise 
 Value PSO SA GA PSO SA GA PSO SA GA PSO SA GA 

k1 20 20.555 19.513 20.522 19.153 17.051 21.576 17.950 17.086 17.201 22.008 16.955 16.845 
k2 20 19.457 20.555 19.485 21.223 25.541 18.807 22.740 24.463 24.298 18.576 29.465 27.960 
k3 20 19.090 20.880 19.183 20.833 26.421 17.058 25.899 30.824 29.245 16.034 18.110 20.581 
k4 20 20.513 19.622 20.292 20.853 19.595 24.663 16.138 15.499 16.082 30.413 37.935 37.319 
k5 20 21.018 18.909 21.403 17.325 12.506 19.867 22.518 17.610 17.079 17.936 15.418 10.028 

Error  3.54% 3.39% 3.55% 6.43% 22.81% 10.51% 17.07% 25.09% 23.18% 19.88% 36.92% 38.99% 

Table3. Results of numerical simulation 
 
For square competition, these three methods are with the same termination criterion, 1000 maximum generation; the 
same upper bound of the search space, twice the actual value of the parameters, lower bound, one tenth of their 
actual values; and the same random values added as noise. 
 
The analysis of the results contained in Tables 3 leads to the following observations: in general, in the minimal 
output information scenario, the PSO performed similarly to the SA and GA in the noise-free case. However, the 
PSO performed better than the SA and GA at all levels of noise tested. The system identification based on PSO is 
feasible and of advantage for damage localization and quantification with possibly few response outputs. 

 
 
CONCLUDING REMARKS 
 
In this paper, an evaluation approach for building structures under a earthquake was proposed to provide damage 
alarm and identification. This was a two-phase time-domain technique capable of alarming, localizing and 
quantifying damage using limited acceleration measurements. The damage alarm can be firstly obtained using ANN. 
The damage location and severity can be determined secondly with the system identification using the particle 
swarm optimization (PSO).  
 
Based on the numerical simulation for a 5-story shear structure, the appropriate parameters of the neural network 
were searched for and suggested. The effectivity of this method was also studied by comparison of structural 
evaluation for the healthy structures with the damaged structures. The verification of two phases was conducted as 
well. In our proposed evaluation approach, damage occurrence alarm and identification could be obtained accurately 
and economically only using readily available acceleration time histories. 
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