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INTRODUCTION 
 
There are many cable-supported bridges at Honshu-Shikoku Bridge Expressway Company in Japan. This 
implies a large amount of labor and risky inspections are necessary for maintenance and monitoring of 
these large structures. It is forecasted that the cost of inspection will be very expensive, and will become a 
big burden in the future. Cable vibrations are normally measured with an accelerometer, and the condition 
of the cable is determined based on its natural frequency. However, these methods require the use of many 
accelerometers and cable connections, including measurement equipment such as amplifiers and a PC on 
the site. Additionally, installation of the accelerometers at high elevation is unsafe. A large amount of labor 
and expenditures have already been spent due to the the above-mentioned reasons for the monitoring of the 
cable member because it is of critical importance. In this research, to improve safety and work of vibration 
measurement in cable-supported bridges, we developed a remote non-contact measurement system by 
combining Laser Doppler Vibrometers (LDV) and total station (TS). By using this system, most of existing 
cable members, girder, and pylon can be monitored quickly, easily and safely. 
 



           
 

Figure 1.  Measurement system by combining Laser Doppler 
Vibrometer (LDV) and Total Station(TS) 

 
 
CHARACTERISTICS OF THIS MEASUREMENT SYSTEM 
 
Past measurements using Laser Doppler Vibrometer had the following disadvantages: 

1) The measurement system was complicated during installation. 
2) During long-distance measurement, it is very difficult to aim at the desired measurement point 
3) The system was expensive 
4) The scanning angle of the system was limited to ±20°. 

But, this system enables the following: 
1) Using Total Station, we can confirm the location of the laser in the measurement position. 
2) It is possible to save the measurement position using the three dimensional coordinates of the 

point. 
3) Using the rotating motor of the Total Station, the scanning angle of the system is ±90°. 
4) It is possible to control the LDV and TS using only one laptop. 

Moreover, using prisms, we developed the technique by which the measurement distance was greatly 
increased. The measurement system is very compact compared with the measurement equipment of the old 
model, it also simplified the installation, and was able to decrease the amount of work involved for the 
monitoring of structures, reducing the amount of errors in measurement (refer to Figure1). 
 
 
MEASUREMENT EXPERIMENT IN OSHIMA BRIDGE AND TATARA BRIDGE 
 
During measurement, the vibration of the cable was measured simultaneously by LDV and accelerometer 
for comparison. The natural frequency identified with LDV and the accelerometer is shown in Figure 2 and 
Figure 3 for a typical cable. 
 
Initially, we expected to encounter difficulty during measurement because of the low-level of the natural 
frequency as the shape of waves of FFT fell into disorder due to the influence of sag and the entire bridge 
of Tatara Bridge. But we were able to measure well. The measurement showed that the LDV is very 
effective in identifying the natural frequency of the cables by non-contact measurement [1]. 
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Figure 2. Comparison of the natural 
frequency in Oshima Bridge hanger rope 
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Figure 3. Comparison of the natural frequency  
   in Tatara Bridge stay cables 
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MEASUREMENT USING LDV AND TS COMBINED SYSTEM IN KOUHEI BRIDGE  
 
When the distance of the measurement point is far away, it is difficult to confirm the irradiation of the 
LDV’s laser spot with the unassisted eye on-site. Thus we developed the measurement system which 
installed an LDV on the TS, which has a highly accurate, remote measurement position identification 
ability (shown in Figure 4). TS can absolutely determine the coordinate system. In addition, it is capable of 
highly accurate positional identification ability of 1mm for 100m distance ahead. 
 
The measurement method and the outline of the control program are discussed below. STEP1.  The 
reflection tapes are set up in the measured points. STEP2. The laser point is adjusted so that the reflection 
level of the laser at the measurement point attains its highest level. STEP3. The measurement time is set. 
STEP4.Aims at each measurement point with TS, and positional information is memorized in TS. TS’s 
measurement time is 0.5 seconds. STEP5. When TS rotates to the position of the saved measurement 
points, the signal is transmitted to the program from the TS side to the LDV side and an automatic 
measurement of LDV starts. STEP6. At the stage where an automatic measurement on the LDV side ends,  
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a) 1st time                                                                       b) 2nd time 

Figure 6. FFT of measurement results for hanger rope 
 
TS moves to the next measurement point. The vibration measurement of all the hanger ropes was executed 
by repeating steps 5 and 6. LDV’s measurement time is 30 seconds. Sampling rate is 1000 Hz. This system 
can automatically repeat measurement thereafter with the location of the measurement point provided only 
once. Additionally, there is a feature in place where the LDV and TS can be controlled using one laptop 
PC. We measured all the hanger ropes twice, validating that repeated measurements can be made 
automatically.  

Figure 4. Experiment of LDV and TS combined system in Kouhei bridge 

Figure 5. Time-history of Measurement result for hanger rope about 80m away 
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The vibration measurement result of the hanger rope about 80m away from the system is shown in Figure 5 
and Figure 6. In the experiment, the hanger rope was hit to vibrate. The natural frequency of the first time 
and the second time measurement are in very good agreement, and it is understood that there is 
reproducibility in the number of peculiar vibrations measured by this system. Moreover, it is confirmed that 
it is almost the same natural frequency as measured with the accelerometer [1][2]. We could check the 
effectiveness of this system in Kouhei bridge measurement. 
 
MEASUREMENT EXPERIMENT OF REPETITION IN TATARA BRIDGE 
 
To further confirm the effectiveness of this system, the measurement was done repeatedly for Tatara 
Bridge's cables, girder, and tower. The outline of the experiment is shown in Figure-7 and Table-1. This 
system can measure each member in bulk. The measurement points are in ten locations in total. The prism 
was set up in each measurement location beforehand. In this research, it is shown that we are able to extend 
the measurement distance of the laser with a prism instead of the reflection tape. The measurement was 
conducted beginning at 15:00 PM, and repeated at each measurement point 12 times up to 9:00 AM of the 
following day. The maximum measurement distance is about 970m. 
 
 
 
 
 
 
�Pedestrian side� 
 
 
 
 
 
 
 
 
 
 
Table 1. The measurement order and distance from instrument 
 

                     Table 2. Comparison of the natural frequency from past measurement 
 
 
 
 
 
 
 
 
 
 

Order 1 2 3 4 5 6 7 8 9 10 
Measurement 
Point 

C1 C11 C21 P G1 G2 C32 C42 G3 G4 

Distance (m) 50.844 124.865 278.383 302.288 390.968 525.719 529.526 725.841 800.252 970.857

1st Natural Frequency  (ambient vibration) 
Member Measured in the past

(by accelerometer) 
1st time in 2006.9 
(by LDV) 

C1-cable 0.371Hz 0.373Hz 
C11-cable 0.496Hz 0.495Hz 
C32-cable 0.415Hz 0.417Hz 
G3-Girder 0.102Hz 0.103Hz 
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Figure 8. Comparison of the natural frequency (C21) 

 
Comparison with natural Frequency measured with servo type sensor 
 
The natural frequencies of ambient vibration measured by servo- accelerometer in the past are shown in 
Table 2. The natural frequenies measured by LDV and the servo-velocimeter in cable C21 are shown in 
Figure 8 (a) and (b), respectively. It can be seen that the natural frequency measured for the first time from 
these results is in good agreement with the natural frequency remotely measured by LDV. This shows that 
our system is capable of accurately remotely measuring vibration of structures. 
 
Repeatability of measured natural frequency 
 
The natural frequencies measured from the 1st time to the 12th time are shown in Figure 9 to Figure 12. 
Measurement point is C1, C32, C42, and G4. These natural frequencies were measured by this system.  It is 
easy to see the identified natural frequencies from these figures, also that the natural frequencies from low-
level to higher-order are in good agreement.  
 
Next, the rate of change of the natural frequencies were calculated by using the following equation. 
 
  
 
 
 
                                                                                                

 
 
 
As a result, it is understood that the natural frequency measured has a rate of change within 4%. The result 
is shown from Figure 13 to Figure 16. This observation naturally follows because the Tatara bridge is under 
use, and natural frequency changes will be small due to temperature change according to the change in the 
weather, wind, and traffic load. It is thought that this rate of change originates from these external factors 
[3].  
 
We have shown that this system has both mobility and accuracy for possible practical use from these results 
to measure the natural frequency of the members of a large structure. 
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Figure 9. Natural frequency of C1 (distance 50.844m) 
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Figure 10. Natural frequency of C32 (distance 529.526m) 
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Figure 11. Natural frequency of C42 (distance 725.841m) 
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Figure 12. Natural frequency of G4 (distance 970.857m) 
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Figure 13.  Change of natural frequency  
from average of C1 

Figure 14.  Change of natural frequency  
from average of C32 

Figure 15.  Change of natural frequency  
from average of C42 

Figure 16.  Change of natural frequency  
from average of G4 
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Figure 18. Natural Frequency using LDV Figure 19. Natural Frequency using  
Servo-velocimeter 
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Figure 17: Long distance measurement experiment



EXPERIMENT USING STEEL PLATE 
 
In order to determine the maximum distance by which we can measure the vibration of a structural member 
using this system, we measured a steel plate placed 2 km away. This steel plate was fixed to an I type 
section of about about 60 kgf weight. Moreover, the prism is set up at the center of the surface of the steel 
plate. The outline of the measurement experiment is shown in Figure-17. The measurement experiment was 
conducted using a servo-velocimeter at the same time as measuring with LDV. 
 
It can be seen that the natural frequency measured by the servo-velocimeter is the natural frequency of the 
steel plate which, when compared with the LDV measurement, are in perfect agreement, even though the 
steel plate is 2 km away in Fugure 18, Figure 19. Note further, that there is no change in the measured 
frequency with additional measurements using the LDV, verifying the capability of the system to measure 
vibration of structures at super-remote distances away. 
 
 
CONCLUSIONS 
 
This system measured the natural frequencies from low-level to higher-order and confirmed that the 
vibration measurement can be done remotely with the change rate of about 4% from repeated 
measurements on Tatara bridge members. 
Moreover, this system is shown to be capable of identifying the natural frequencies from a distance of 2km. 
It is therefore, possible to measure the natural frequency of the stay cables, hanger ropes, towers and girder, 
etc. at highly remote distances of long span cable-supported bridges. A super-remote vibration 
measurement system capable of reducing the amount of labor of current vibration measurement work and 
increase safety through the combination of an LDV and TS was developed. 
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