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Abstract 
 
Deflections of structural components, such as bridge girders, are often the most difficult to monitor. Strain 
measurement is relatively simple with the use of electronic strain gauges, fiber optic sensors, or other strain 
measuring devices. This paper investigates two different methods for predicting or monitoring the deflection of a 
simply-supported full-scale bridge girder subjected to a partially distributed uniform load using strain 
measurements. A full-scale pre-stressed concrete bridge girder was instrumented and tested under a static monotonic 
load in the linear elastic range. This paper compares the experimentally measured deflections along  half the length 
of the girder and compares to theoretically predicted deflections and deflections calculated from observed 
experimental strains by two different methods. Experimental test results show that estimating deflections from 
observed strains is feasible within the linear-elastic range of such girders. The methods outlined for predicting 
deflections of full-scale pre-stressed concrete bridge girders from observed strains are a valuable tool for structural 
engineers and for the periodic and continuous monitoring of civil structures such as bridges. 
 
 
INTRODUCTION 
 
In periodic and/or continuous structural health monitoring of structures or structural members, such as bridge 
girders, deflections tend to be the most difficult to measure and monitor [1]. Traditional devices such as 
displacement transducers are subject to substantial drift and have to be connected to an “immovable” reference 
point. Laser-controlled displacement measuring devices are not subject to these disadvantages but are very 
expensive. 
 
On the other hand, strains are the easiest to measure. This paper investigates two different methods for calculating 
the deflection of a simply-supported full-scale bridge girder subjected to a partially distributed uniform load using 
strain measurements. Both methods rely on determining the curvature of the girder from the observed strains. In one 
of the methods, deflection from theoretical and observed strains are determined using numerical integration. The 
other method uses harmonic analysis to determine deflection of the girder from theoretical curvatures and curvatures 
calculated from measured strains. Deflections were continuously measured throughout the test in order to validate 
deflections predicted from the two models. 
 



 
 

EXPERIMENTAL PROGRAM 
 
Girder details 
 
The full-scale pre-stressed concrete bridge girder that was tested was a channel-type girder. It measured 12000 mm 
in length and had end blocks at both ends for stress transfer from the pre-stressing strands. The overall dimensions 
of the cross-section were 1200 mm in width by 650 mm in depth.  The girders two webs as shown in Figure 1. The 
reinforcement consisted of 20 - 13 mm diameter low-relaxation pre-stressing strands, 7 - 15M deformed steel bars 
located in the flange, and 15M deformed steel stirrups. The depth of the flange was 120 mm and both of the webs 
measured 150 mm in width at the extreme tension fiber with slight tapers on each side. 
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Figure 1:  Typical cross-section of full-scale pre-stressed concrete bridge girder (all dimensions shown in mm) 
 

Test set-up 
 
The girder was simply-supported on two concrete block supports with steel rollers, allowing for free rotation, with a 
center-to-center spacing of 1100 mm (Figure 2a). The girder was subjected to 3-point bending with a steel beam 
apparatus at mid-span to simulate a partially distributed uniform load over a length of 1670 mm. The spacing of the 
steel beams was 500 mm center-to-center and each was placed above a neoprene pad.  The steel loading apparatus 
was loaded by two independently controlled hydraulic jacks that were attached to a steel loading frame erected after 
the girder was placed on the supports (Figure 2b). 
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Figure 2a:  Elevation of simply-supported beam and loading apparatus  
 



 
 

 
 

Figure 2b:  Photograph of test set-up 
 

Deflection Measurement 
 
Deflections were measured at 6 locations along the left length of the girder. Linear variable displacement 
transducers (LVDTs) were supported from a free-standing rack and were placed at 500 mm from the support and 
then spaced every 1000 mm up to mid-span of the girder (Figure 3). They were placed above the girder and were 
freely resting near the edge of the flange. An LVDT was placed at the same distance from the support where a 
particular cross-section of strain gauges was located. All of the LVDTs were connected to a data acquisition system 
via extension cables. In order to minimize the quantity of instrumentation required, it was assumed that the girder 
would behave symmetrically under the applied load. 
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Figure 3:  LVDT 
 

Strain Measurement 
 
A large number of strain gauges were required along the length of the girder in order to estimate the magnitude of 
deflection from recorded strains. The proposed methods for determining deflections from observed strain 
magnitudes required that strain gauges be placed at several intervals along the girder. A total of 34 electronic strain 
gauges were required and all of them were installed on the surface of the concrete. Three strain gauges were 
installed over the support and 500 mm from the support because of the end block. Four strain gauges were installed 
along the remaining 7 sections, equally spaced at 1000 mm center-to-center (Figure 4a). At each cross-section along 
the girder one concrete strain gauge with a, gauge length of 50 mm was placed in the longitudinal direction on the 
top extreme compression fiber of the flange and on the center-line of the girder in the transverse direction. Another 
strain gauge at the instrumentation section was placed in the same orientation on the underside of the flange and the 
remaining two gauges, at any given cross-section, were placed on the extreme tension fiber of each of the webs 
(Figure 4b). Each of the strain gauges was installed using appropriate strain gauge placement techniques and was 
connected to a data acquisition system. 
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Figure 4a:  Locations of electronic strain gauges along the girder 
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Figure 4b:  Locations of electronic strain gauges on cross-section ‘C’ from Figure 4a 
 

Test Procedure 
 
Researchers felt that the mass of the steel loading apparatus was heavy enough to induce minimal strains and 
deflections in the girder; and to avoid any experimental error, the steel loading apparatus was removed prior to 
zeroing all of the instrumentation. After all of the instrumentation was zeroed and deemed to be functioning 
correctly, the steel loading apparatus was placed back onto the girder and the test was started. The load was applied 
in 25 kN increments up to a maximum load of 250 kN. At each 25 kN increment, the load was held constant in order 
to allow the data acquisition system to record several readings. After obtaining a maximum load of 250 kN, the load 
was removed and the procedure was repeated several times in order to confirm the readings from the 
instrumentation. 
 
 
CLASSICAL BEAM THEORY, NUMERICAL THEORY, AND HARMONIC THEORY FOR 
PREDICTING DEFLECTION 
 
It is noted that classical beam theory works well for specific load conditions, such as the one used in the experiment, 
and for well defined geometries. Structures such as bridges do not have well defined loading cases, traffic loads are 
completely random, and geometries can become a lot more complex than those in the laboratory. The other two 
methods outlined in this section use numerical integration and harmonic analysis to estimate deflections. Classical 
beam theory may be very difficult to apply to more complicated structures such as bridges and, therefore, the 
methods of numerical integration of curvatures along with harmonic analysis using curvatures are investigated. 
 
Prediction of Girder Deflection Using Classical Beam Theory for a Simply Supported Girder Subjected to a 
Partially Distributed Uniform Load 
 
The deflection curve can be derived from the moment curve for a simply supported beam. The set-up for the pre-
stressed concrete girder can be simplified and is shown in Figure 5. 
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Figure 5:  Idealized view of simply supported pre-stressed girder test set-up 
 

The curve for the bending moment of the simply supported girder subjected to a partially distributed UL is given by: 
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Applying double integration to the left and right terms of Equation (1) yield the following equation for deflection: 
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By substituting the desired distance x along the girder, the magnitude of applied load wb, the modulus of elasticity 
E, and transformed moment of inertia I, the slope and deflection at any point along the girder can be determined. 
 
Prediction of Girder Deflection by Numerically Integrating Theoretical Curvatures 
 
Figure 6 illustrates a simplified view of the girder during its non-deflected and deflected states. Strain gauges were 
located at 7 different cross-sections. 
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Figure 6:  Simplified profile of simply supported girder illustrating principle of numerical integration 



 
 

The curvature ψi can be determined at any cross-section i by the following expression: 
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where εi(top) and εi(btm) are the top compression and bottom tensile measured strains respectively and d is the distance 
along the depth of the girder between them. Equation (5) will be used later to determine experimental curvatures. 
The slope at any given cross-section is simply the numerical integration (area under the curvature curve) of the 
calculated curvatures at that cross-section from the observed strains. For a simply supported girder, the slope at mid-
span is equal to zero. Thus, the equation for slope at any given cross-section can be written as follows: 
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where ψi and ψi+1 are the calculated curvatures at the different cross-sections along the girder and xi is the horizontal 
distance between them. After the slope has been calculated at the respective cross-sections, the slope curve can be 
numerically integrated over its length starting at the support. The deflection for a simply supported girder at its 
support is zero and therefore the expression can be written as: 
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where θi and θi+1 are the slopes at the different cross-sections determined from the calculated curvatures and xi is the 
horizontal distance along the girder between the various cross-sections. The deflections were calculated using the 
theoretical curvatures determined by beam theory outlined in the previous section and were used to validate the 
method of estimating deflections using numerical integration. 
 
Predicting Deflections Using Harmonic Analysis and Theoretical Curvatures 
 
Estimating deflections using harmonic analysis also uses the same principle for determining curvatures from 
observed strains as noted in the previous section. The advantage of this method is that it optimizes the number of 
sections required, i.e. strain gauge locations.  If the sections or strain measurement locations are symmetric with 
respect to mid-span then the central estimate of deflection is excellent, whether the loads are symmetric or 
asymmetric.  It can be shown that the deflection of the girder is approximated by a sine function and is given by: 
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where c is the amplitude of the sine function determined by minimizing the error using a least squares method and 
providing a best fit using curvatures. The distance along the girder at the location the deflection is to be calculated is 
represented by x and L is the length of the girder.  The magnitude or amplitude of the sine function, defined by the 
variable c is given by the following equation, where ψi is curvature determined at any given section as illustrated in 
Figure 7. 
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EXPERIMENTAL RESULTS 
 
The experimental noted outlined in this paper only deal with the girder behavior in the linear elastic range. The 
given are outlined in terms of measured deflections and observed strains. 
 
Deflections  
 
An initial deflection of 0.762 mm was measured due to the weight of the steel loading apparatus which consisted of 
4 steel beams across the width of the girder. The maximum observed deflection of 11.318 mm was observed at the 
mid-span of the girder under a total applied load of 200 kN. The load deflection relationship was linear up to a load 
of 200 kN. The maximum deflection increased approximately 2.6 mm for every additional 50 kN of total applied 
load distributed over the width of 1670 mm. The deflections for the girder are listed in Table 1 for loads of 50, 100, 
150, and 200 kN. 
 
Table 1. Deflections for the total loads of 50, 100, 150, and 200 kN 
 

x = 0 x = 500 x = 1500 x = 2500 x = 3500 x = 4500 x = 5500

P = 50 kN 0.000* 0.305 1.122 1.995 2.792 2.991 3.189
P = 100 kN 0.000* 0.530 2.024 3.576 5.069 5.587 5.894
P = 150 kN 0.000* 0.770 2.636 4.913 7.034 7.968 8.357
P = 200 kN 0.000* 1.060 3.551 6.568 9.511 10.758 11.318  

*Deflections over support were assumed to be zero 
Note: Assuming symmetry, deflection profiles shown are for one half of the pre-stressed concrete girder. Symmetry was 
assumed. 

 
Strains 
 
At the mid-span, Initial strains of -43, -28, 3, and 9 µε were measured on the extreme compression fiber on the 
underside of the web and at the bottom of the two flanges of the girder respectively, due to the weight of the steel 
loading appartatus.  The strain magnitudes change significantly above the load of approximately 220 kN.  A hairline 
crack at mid-span was observed  when the load was at this levelat that time. For the purposes of this paper, methods 
of determining deflection from observed strains will be limited to the elastic range of the girder, up to a load of 
200 kN. The maximum observed compressive strain measured on the extreme compression face of the girder was 
-289 µε and the maximum strain observed on the extreme tension face was 456 µε. Figure 7 shows that at a total 
applied load of 200 kN, the strain distribution over the depth of the girder is linear and the assumption that a plane 
section remains plane is correct. The experimental top and bottom strains for the extreme compression and tension 
taces respectively are noted in Table 2. 
 
Table 2:  Top (extreme compression fiber) and bottom (extreme tension fiber) strain magnitudes for the total loads of 50, 100, 
150, and 200 kN. 
 

P = 50 kN -26 -19 -28 -3 -38 20 -53 47 -55 74 -84 101 -99 102 -50* 100 -86 81
P = 100 kN -29 -18 -33 6 -57 48 -86 99 -55 147 -143 199 -160 210 -78* 200 -136 161
P = 150 kN -32 -18 -39 15 -77 76 -120 153 -141 223 -204 302 -224 325 -106* 304 -188 244
P = 200 kN -35 -17 -43 25 -96 106 -154 208 -184 299 -266 410 -289 456 -137* 428 -245 336
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P = 150 kN -32 -18 -39 15 -77 76 -120 153 -141 223 -204 302 -224 325 -106* 304 -188 244
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*The strain gauge located on the extreme compression fiber at a distance of x = 6500 mm from the support was not functioning 
properly. Therefore, the values shown are strain magnitudes on the underside of the web. 
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Figure 7:  Plot of strain versus depth of girder for strain gauges located at mid-span of the pre-stressed concrete 
girder. 

 
COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS 
 
Numerical integration of theoretical curvatures and harmonic analysis using theoretical curvatures gave results 
accurate to about 1 % of those given by the classical beam theory. This section notes the results obtained using the 
numerical integration and harmonic analysis techniques of the theoretical curvatures and experimental curvatures 
calculated from observed strains and compares them to those measured experimentally. Classical beam theory 
estimates of deflection along with predictions of deflection using numerical integration and harmonic analysis of 
theoretical curvatures are compared to measured deflection in Table 3. 
 
Table 3 and Figure 8 compare the experimentally measured deflections to those calculated from numerical 
integration and harmonic analysis of the experimentally observed strains. Both methods predict deflections with 
reasonable accuracy given the difficulty of predicting such deflections. Harmonic analysis using experimental 
curvatures determined from observed strains overestimated the mid-span deflection by 7.6 % and numerical 
integration also overestimated the actual measured deflection by 6.6 %. 
 

Table 3. Comparison of measured deflections and theoretical deflections 

0 (Support) 0 0.000 0.0
500 1.06 1.900 79.3

1500 3.551 5.574 57.0
2500 6.568 8.867 35.0
3500 9.511 11.525 21.2
4500 10.758 13.295 23.6

5500 (Mid-span) 11.318 13.927 23.1

0 (Support) 0 0.000 0.0
500 1.06 1.886 77.9

1500 3.551 5.515 55.3
2500 6.568 8.764 33.4
3500 9.511 11.377 19.6
4500 10.758 13.102 21.8

5500 (Mid-span) 11.318 13.710 21.1

0 (Support) 0 0.000 0.0
500 1.06 1.998 88.5

1500 3.551 5.834 64.3
2500 6.568 9.196 40.0
3500 9.511 11.813 24.2
4500 10.758 13.474 25.2

5500 (Mid-span) 11.318 14.043 24.1

Harmonic Analysis using Theoretical Curvatures (Total Load = 200 kN)

Numerical Integration of Theoretical Curvatures (Total Load = 200 kN)
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3500 9.511 11.813 24.2
4500 10.758 13.474 25.2

5500 (Mid-span) 11.318 14.043 24.1
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Note: Deflection profiles shown are for one half of the pre-stressed concrete girder. Symmetry was assumed. 

 
Figure 10:  Measured, numerical integration of experimental curvature, and harmonic analysis using experimental 

curvature deflection profiles for the total applied load of 200 kN 
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
Experimental test results obtained from the static testing of a full-scale pre-stressed concrete bridge girder subjected 
to a partially distributed uniform load indicated that estimating deflections from observed strains is feasible within 
the linear-elastic range of such girders. Beam theory for a simply supported predicted a mid-span deflection of 
13.927 mm compared to the actual measured deflection of 11.318 mm. The proposed methods of predicting 
deflections along the length of the girder due to an applied load from observed strains also predicted deflections with 
smaller accuracy given the difficulty of predicting such deflections. Mid-span deflections of 12.068 and 12.178 mm 
were estimated using numerical integration and harmonic analysis of calculated curvatures from observed strain 
magnitudes respectively. Both methods depend upon curvatures determined from measured strains suggesting that 
the accuracy of strain measuring devices used for the test do have a direct effect on the accuracy of deflection 
predictions.  Although fiber optic sensors were also used to measure strains, the results are not included in this 
paper. 
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