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Abstract 
 
This article reports results obtained in applying neural computing techniques to the problem of vehicle type 
classification, based upon strain information obtained from a vehicle bridge. In the absence of actual strain 
measurements from a structure in service, simulated strain responses to the passing of cars, vans, buses and trucks 
were generated and used for training and evaluation purposes. It was found that a neural classifier is able to 
accurately identify single isolated vehicles, with success rates up to 100%, based on the simulated strain profile from 
four sensors. 
 
It was further found that proper identification of one vehicle when two are present within a single observation period 
was possible, even when the strain responses are overlapping. However, in these cases, the recognition accuracy 
obtained does not exceed 90% for 100 test vehicles. The vehicle type selected by this system corresponds to the 
vehicle with the highest magnitude strain signature. Modifications to the system were explored in efforts to improve 
recognition while removing the emphasis on magnitude alone. In doing so, a classifier was produced, which selected 
the most consistently identified input pattern over a series of four sensors. Recognition accuracy for this system was 
found to be 84% for 1000 simulated vehicles. 
 
 
INTRODUCTION 
 
The owners of large civil infrastructure, such as vehicle and rail bridges, see structural health monitoring (SHM) as 
an important immerging tool, to better maintain and manage their infrastructure. In the ideal case, an SHM system is 
permanently deployed on a structure, allowing for continuous oversight of the structure’s operation during its daily 
use. These systems consist of a network of wired or wireless sensors that are placed at key locations throughout the 
structure in order to monitor important aspects of its operation. A variety of sensor types are typically used, 
measuring properties such as strain, temperature, acceleration, displacement and vibration of key components. 
 
If the monitoring system is included as an element of the original structural design, and thus is in place from the 
time the structure is first commissioned, it makes it possible to track the behaviour of components as they undergo 
regular use. Furthermore, changes in the properties of these components that occur as a result of normal aging of the 
structure, or in response to external events, can be more readily identified. Thus, SHM provides infrastructure 
owners with the information needed to continuously assess the state of their infrastructure and, from that knowledge, 
to respond in a timely manner to concerns or problems as they arise. 
 



A direct consequence of the continuous aspect of structural monitoring is the need to manage the resulting vast 
collection of measurement data obtained. In previous studies [1,2], we have explored methods of differentiating 
between measurement events that are typical of a specific structure’s normal response to environmental excitation 
from those which are atypical. This was accomplished by using neural computing techniques to construct a model of 
the unique response of an individual structure, based solely upon raw sensor measurements obtained over time. 
Once such a suitable model was obtained, it was then used as a comparative baseline from which to assess further 
measurements. The degree to which those measurements agreed with previous experience provided an assessment of 
the novelty of the new measurement. A consequence of this approach is the ability to employ the novelty assessment 
as a means of filtering collected data to preferentially store noteworthy measurements. 
 
This article extends that previous work by introducing neural computing techniques to classify the nature of an 
external excitation, which gives rise to a measured sensor profile. In doing so, it is expected that noteworthy or 
novel events with known causes can be identified and counted. As a consequence, the remainder of events that do 
not adhere closely to a known class of excitation can be separated from those of known origin, and thus examined in 
greater detail. The specific nature of excitation we are concerned with in this article relates to strain profiles 
produced by vehicular traffic on a bridge.  
 
 
VEHICLE MODELS 
 
Four different vehicle classes are considered in the current study. These are cars, vans, buses and large trucks. In the 
ideal situation, actual measurements of excitations from these four vehicle types recorded from an in-service bridge 
structure would serve as the basis for training and evaluating the neural vehicle classifiers. The bridge structure of 
interest here is the Red River-North Perimeter Bridge in Winnipeg, Manitoba, Canada. However, this structure has 
only very recently been fitted with a sensor system consisting of 48 strain gauges positioned on one bridge span. 
Actual measurement data from this bridge was unavailable at the time this study was undertaken. As a result, in 
order to facilitate investigations into the general suitability of neural techniques for vehicle classification, we instead 
produced simulated strain profiles intended to mimic, in overall form, those expected to occur in measurements from 
such a structure. Based on previously observed measurements, profiles for the four vehicle classes were produced 
using a combination of peaked functions of a Gaussian nature. 

Individual Vehicle Data Models 
 

Simulated strain information for car and van classes were produced using the same generating function, consisting 
of a single peaked response. In the case of these smaller vehicles, the relative spacing of the vehicle axels, along 
with the low vehicle weight, do not make it possible to distinguish individual vehicle axels in the strain 
measurements from bridge girders or the bridge deck. Instead, a single strain peak resulting from the entire vehicle 
passing the area of a sensor should occur. The generating function used for the car and van data is given in Equation  
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In order to mimic the expected variations in the weights of vehicles and their speed, the magnitude of the peak, 
controlled by the term wk is itself selected from a Gaussian distribution with a fixed mean and a variance. In the case 
of cars, an average weight of 1450 kg was used, along with a variance of 200 kg. For vans, a mean weight of 2000 
kg was used, along with the same 200 kg variance. Vehicle speed and length affects the spread of the peaks as 
controlled by the variance term σ2 in Equation 1. As with weight, variations in vehicle length is also modelled using 
a Gaussian distribution. Here a mean length of 4.5m was used, together with a variance in that length of 0.5m. 
Finally, the term m in Equation 1 permits the location of the peak along the timeline of the simulated measurement 
data to be adjusted. Examples of the resulting simulated strain profiles are provided in Figure 1 for a car and van. 



 

Figure 1: Simulated strain profiles for a car and van. 

Unlike cars and vans, which consist of a single peaked response, the greater overall weight of buses and trucks, 
along with their much larger axel spacing, allows for the distinction of individual axels within a strain profile. 
Therefore, the simulated strain response for these two classes of heavier vehicles are made up of two prominent 
peaks. In the case of the bus, the peaks are of similar amplitude, with the height of the rear peak being slightly 
greater in order to take into account the weight of the engine, which is normally located in the rear of a bus. As well, 
the space between the two peaks is made slightly shallow by introducing a third Gaussian between the initial two. 
Equation 2 gives the full formulation of the simulated bus response. 
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In the case of large trucks, only a two peak response is considered. This is to mimic the truck cab and trailer, each 
passing separately over the location of a sensor. Equation 3 gives the full functional description of the simulated 
truck profile. 
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As was the case with cars and vans, the weight and size of buses and trucks were varied based upon a Gaussian 
distribution. Specifically, the average weight of a bus is taken as 18000 kg with a variance of 500 kg. For trucks the 
average is taken to be 20000 kg with a variance of 1000 kg. The length of buses were taken to be fixed at 12m, 
while that of trucks was nominally 12.5m with a variance of 0.5m. Figure 2 illustrates the bimodal profile of the bus 
and truck response. 

 



 

Figure 2: Simulated strain profile for a bus and truck. 

Vehicle Datasets 
 
The individual data models were used to generate two types of simulated data for training, testing and validation of 
the vehicle classifiers being investigated. The first is a sparse dataset consisting of single, isolated vehicle events 
within any four second period in time. While the measurement data itself would be continuous, to facilitate process 
of the information by the vehicle classifier, it is broken down into four second measurement windows. This window 
size was selected to insure that the strain profile for a vehicle moving at slow speeds would be fully accommodated 
within the observation window. The position of a vehicle within this window was selected randomly with a uniform 
distribution. 
 
The second dataset type is an overlapping dataset consisting of at most two vehicles within the same observation 
window. In many cases, these simulated strain profiles will involve considerable overlap between the two vehicles. 
This type of response would be typical of two vehicles traveling close to each other in the same traffic lane, or two 
vehicles traveling together in adjacent lanes. 
 
Each of the datasets is composed of measurements from a series of four simulated sensors positioned 4m apart 
longitudinally in the centre of a single bridge span. While this sensor count is much lower than the 48 present on the 
actual bridge, many of the later sensors are recording similar information from adjacent girders and steel strapping 
all supporting the same deck slab.  
 
 
NEURAL VEHICLE CLASSIFIER 
 
In this study we wish to explore the ability of neural computing techniques to perform vehicle type classification 
based on the available sensor data. The neural system we are using is composed primarily of two layers of 
processing elements, as shown in Figure 3. The lower layer is trained first in an unsupervised manner using the 
frequency sensitive competitive learning (FSCL) algorithm [3,4]. The algorithm adjusts the layer one 
interconnection weights in order to model the general statistical distribution of the data within the input space. In 
this particular application, the input is composed of the full strain information from the four sensors during a single 
four second observation window. For a simulated sensor sampling frequency of 100Hz this translates into a 1600 
dimensional input. 
 



This first layer becomes a feature extractor that is tuned to the specific properties of the input. An exponential output 
function is applied to the layer one outputs before they are passed on as inputs to layer two. Layer two of the 
network is trained in a supervised manner [5], using the layer one features along with an output target vector to 
direct the training. Its output consists of four neurons, each corresponding to one of the four vehicle type 
classifications of interest. 

 

Figure 3: Neural network vehicle classifier module. 

 
The system was trained using a dataset containing only sparse vehicle events. It was subsequently tested on its 
ability to classify vehicles from a second sparse dataset and an overlapping dataset. When evaluating unseen sparse 
inputs, the system was able to correctly classify 68% of 3000 input patterns. A significant proportion of the patterns 
that were labeled incorrectly (14% of the 3000) were misclassified as a direct result of the vehicle strain profile not 
being completely contained within the observation window. This is analogous to a vehicle entering or leaving the 
window and thus displaying a clipped strain response. 
 
When tested on overlapping data, classification decisions from five consecutive observation windows were 
combined using a majority rule in order to formulate a classification consensus based on additional evidence. 
However, even with the aid of the majority rule, the system was only able to correctly classify 60% of 100 test 
vehicles. In this context, a window of data was considered to be correctly classified if either one of the two vehicles 
were properly identified. During these tests, the classifier showed an inability to distinguish between cars and vans, 
and buses and trucks. 
 
An analysis of the systems operation during these tests showed that the significantly larger magnitude inputs of 
buses and trucks were dominating the feature extraction process. To address this problem, a fixed data preprocessing 
stage was introduced, which scaled the data in the current input window to a uniform peak amplitude. By removing 
the discrepancy in amplitude, this one property would no longer skew the assignment of processing units based on 
input magnitude. The scale factor used to correct the input magnitude was not discarded, but was provided to a 
modified second layer as a further input. Figure 4 shows the structure of this modified network. 



 

Figure 4: Neural network vehicle classifier with input scaling. 

 
Tests using the modified network architecture with scaling showed a significant increase in recognition accuracy. 
When evaluated using the sparse dataset, classification accuracy rose to 90% on 1000 vehicles. When a majority rule 
was used with the sparse dataset, perfect classification of all test inputs were obtained. Tests of the overlapping 
dataset displayed a similar increase in performance. Successful classification of the dominant vehicle type was 
achieved in 90% of the tests conducted using 100 vehicles. 
 
One of the shortcomings observed with the scaled classifier is its predisposition to select an input pattern 
classification that corresponds with the highest magnitude input present in the observation window. The presence of 
another vehicle with a lower magnitude and appearing for a longer duration is completely lost to a vehicle with a 
higher response. For example if the observation window contains strains from both a car, which is seen by all the 
sensors, and a bus, seen by only two of the four sensors, the system classification would be that of a bus. However, 
given that the car is visible in the response of all sensors, a more consistent classification would be that of a car. 
 
In an effort to correct for this problem, inputs from each of the four sensors were separated and provided to their 
own individual sub-network. This is illustrated in Figure 5. A single sub-network consists of a feature extractor and 
an event identifier. Data from each sensor is first normalized and then presented to the feature extractor layer of each 
subsystem. Outputs from the feature extractor are then presented to the event identifier along with the maximum 
strain extracted during the preprocessing stage. The classifications from each of the four event identifiers are then 
forwarded to the final layer for processing. A final classification decision is then made using the maximum number 
of wins from the four subsystem classifications. Training of the subsystems is accomplished by first training only a 
single subsystem, as was done previously, and then replicating the same trained sub-networks for each the four 
sensors. The final output stage does not require training as it is simply a majority winner layer. 
 
The classification accuracy of this system degraded to 84% for 1000 simulated vehicles from the sparse dataset. It is 
thought that this decrease in performance is due to poor training at the subsystem level. While individual vehicle 
performance declined, detection of two vehicles present in the same observation window improved significantly. 
The system was able to detect and classify vehicles with lower magnitudes but with a more consistent presence in 
the window. The classification decision was given to the vehicle type most represented by the sensors. For example, 
a car observed by three sensors and a large truck observed by only one will result in the car being selected as the 
winner. 
 



 

Figure 5: Neural network vehicle classifier with voting. 

 
 
CONCLUSIONS 
 
This work has explored the use of neural computing techniques for the classification of vehicle type based on 
modelled strain measurements from a vehicle bridge. Three network architectures were explored. It was found that 
recognition accuracy of up to 100% was possible for isolated vehicles within a fixed observation window. Accuracy 
in the presence of two vehicles was found to be 90% in the case of one network architecture favouring overall input 
magnitude, while an accuracy of 84% was obtained in a second network focusing on the overall consistency of a 
response. 
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