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Abstract  
 
A force identification algorithm is proposed for estimating axle loads of trucks moving over a bridge. A bridge is 
modeled as a beam in the current study. Accelerations are measured at multiple locations along the bridge and time 
histories of displacements are computed from measured strains at the same locations. Stiffness and mass are 
considered as already identified, and damping is neglected due to a relatively short passing period of a vehicle over a 
bridge. Part of data measured while the truck is moving on the bridge is used. Nodal force vectors are computed by 
using a database of equivalent nodal force transformation matrix at different speeds. The algorithm was examined 
through laboratory experiments on a single span model bridge. 
 
 
INTRODUCTION 
 
It is acknowledged that correct identification of moving loads over a bridge is important for the adequate 
maintenance of bridges.[6] Many experimental studies on bridges have been carried out for similar purposes whose 
main issues are to identify correct wheel loads and to estimate live load effects on a bridge. WIM(weigh-in-motion) 
is a broad coverage over this area. WIM can be categorized by two types; embedded WIM and BWIM(bridge 
WIM). Different from embedded WIM as a direct measure of moving loads, BWIM estimates moving loads 
indirectly by considering a bridge as a balance. Wheel loads are identified inversely by measuring responses of a 
bridge at selected locations.[8,9] Most available BWIM algorithms have applied influence lines of moment or 
strain.[5,7] Since a bridge behaves dynamically under passing vehicles, however, such static algorithms definitely 
provide inherent errors. 
 
The current study proposes an algorithm for identifying moving loads using the dynamic governing equation. Use of 
dynamic governing equation can alleviate the effect of vibration but still cannot resolve the problem related to the 
incomplete measurement in space, state, and noise.[8] The proposed algorithm utilizes acceleration time histories 
measured at limited locations and computes displacement analytically from dynamic strain measured at the same 
locations as acceleration. Time histories of velocity were not computed because damping was ignored in the 
algorithm by assuming that a vehicle passes a bridge in a relatively short period. The most distinguishable difference 
between available algorithms and the proposed one may be the use of measured acceleration time history. 



 
The proposed algorithm utilizes a beam model identified through a system identification method using measured 
responses. Nodal force transformation matrix is also proposed to transform a moving load into an equivalent nodal 
force. Since vehicles pass a bridge at different speeds and the resulting equivalent nodal forces vary depending on 
the speed, a ready-made database of nodal force transformation matrix at each different vehicle speed was prepared 
and applied to estimate moving loads inversely. To examine the developed algorithm, laboratory tests were carried 
out with the cases of one vehicle and two vehicles moving at a constant speed. 
 
 
FORCE IDENTIFICATION ALGORITHM 
 
Dynamic Governing Equation 
It has been assumed that mass and stiffness properties can be identified through an application of system 
identification. It has been also assumed that damping effects can be neglected by noticing that a truck usually passes 
over a bridge in a relative short period. Thus, the dynamic governing equation can be reduced to Eq.(1) with known 
structural matrices of M and K. 

( ) ( ) ( )t t t+ =Mu Ku f&&  (1) 

where M(N×N), K(N×N) = mass and stiffness, , ,u u f&& = acceleration, displacement, and force vector at time t, 
respectively. 
 
Computation of Unmeasured Acceleration 
To consider the incompleteness in space when accelerations are measured at limited DOF, acceleration can be 
divided into measured and unmeasured parts at each time step and can be related to the modal information as Eq.(2). 

{ }( ) ( ) ( ) ( ) ( )TT
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where ,m uu u&& && = measured and unmeasured part of acceleration vector at time step t, ,m uΦ Φ = measured and 
unmeasured part of mode shape matrix Φ , q&& = double differentiation of generalized coordinate vector with respect 
to t, respectively. By the least squared, acceleration response at unmeasured DOF can be formulated as Eq.(3). 
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Computation of Displacement 
Displacements are computed from measured dynamic strain data locating at the same locations of accelerometers. 
From the beam theory, the following relationship of Eq.(4) can be easily formulated. 

( , ) ( , ) ( ) ( )
2 2m m m
h hx t x t x tε′′ ′′= − = −u qε Φ  (4) 

where mε = strain data measured at the same locations of accelerometers, m′′u , m′′Φ = double differentiation of 
displacement vector and mode shape matrix with respect to the coordinate x in the longitudinal direction, and εq = 
generalized coordinate related to the strain, respectively. 
 
Transformation of Moving Loads to Equivalent Nodal Force 
The force vector f in Eq.(1) is an equivalent nodal force in a finite element model. Since actual loads are moving 
over a bridge, however, it is required to relate moving loads to the equivalent nodal force as Eq.(5). The actual loads 
can be obtained by the least squared formulation of Eq.(6). 

( ) ( , ) ( )t t v t=f T p  (5) 
1
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where T = transformation matrix between the equivalent nodal force f and actual loads p in a constant velocity v. 
 



 
LABORATORY EXPERIMENTAL STUDY 
 
To examine the applicability of the proposed algorithm, laboratory experiments were carried out. The model steel 
bridge of 6m in length and the model vehicle are shown in Figure 1. The model truck was controlled to move at a 
constant speed on the bridge. The distance between two axles of a model truck was 30cm which is too short as 1/20 
of the length of the bridge to identify both axles reasonably. Accelerations were measured to the vertical direction at 
5 locations of equal distance on both side surfaces. Longitudinal strains by fiber optic sensors were also measured at 
the same locations of the accelerometers below the side flanges. 

 

  
 

Figure 1. Laboratory model steel bridge and model vehicle 
 

 
Figure 2. Comparison of displacements from LVDT and those computed from strains 

 

       
 

Figure 3. Computed nodal forces        Figure 4. Transformed nodal forces 
 
Before carrying out the moving load tests, mass and stiffness properties of the beam model were identified by a 
system identification scheme using measured modal data obtained from impact hammer tests. Figure 2 compares the 
displacements measured from LVDT and those computed from measured strain data. The results demonstrate the 
usefulness of the strain measurements with narrow gap between the two displacements even though negligibly small 
fluctuation of displacements computed from strain data could be observed. Figure 3 shows the computed nodal 
forces from the dynamic governing equation of Eq.(1) and the nodal force data for the transformation matrix are 
illustrated in Figure 4. 
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(1.54m/sec)                                              (2.85m/sec) 

 
Figure 5. Identified forces of a moving truck with two different speeds 

 
Table 1. Identification error corresponding to truck velocity 

case velocity (m/sec) AE (%) RMS (%) 
1.5 0.92 4.41 I 

(one truck) 3.0 1.26 3.70 

1.0 truck 1 
truck 2 

3.15 
2.00 

7.93 
4.07 II 

(two trucks) 
2.0 truck 1 

truck 2 
0.33 
0.89 

7.55 
3.84 

 
Case I: One Model Truck 
As the first trial case, one model truck of 1.2kN moved on the bridge with various speeds. Dynamic responses of 
accelerations and strains were measured and the truck load was identified as a single load along the beam. The 
identified results are drawn in Figure 5 for the speed of 1.54m/sec and 2.85m/sec, respectively. Regardless of the 
truck speeds, the trends of the two cases are almost identical. In both speeds, the identified forces gradually decrease 
as the truck approaches to the end of the bridge. The identification errors are summarized in Table 1 with errors 
defined by Eq.(7). 
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where ( ), ( )i ip t p t% = estimated and actual loads at time step ti. 
 
Case II: Two Model Trucks 
Two trucks were linked together by a buckle so that two trucks moved at the same constant speed over the bridge. 
Since the axle distance of each truck is too small, two trucks were identified as two concentrated loads. The weight 
of the front and the rear trucks were 0.6kN and 0.9kN for the experiments, respectively. The identified results are 
drawn in Figure 6 for the speed of 1.11m/sec and 1.91m/sec, respectively. From the figure, we can observe that the 
identification of the front load sharply jumped when the first load moved out of the bridge while that of the rear load 
sharply jumped when the rear load entered the bridge. Both numerical jumps occurred when the number of 
estimated loads was suddenly changed. The identification errors are also summarized in Table 1 with AE and RMS 
errors quantitatively. The results demonstrate that the truck loads could be reliably identified within a tolerable error 
even with those sharp jumps. 
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Figure 6.Identified forces of two moving trucks with two different speeds 

 
 
CONCLUSIONS 
 
A new BWIM algorithm is presented based on the dynamic motion equation and have been examined through 
laboratory experimental studies. It has been assumed that an analytical model for the bridge and its mass and 
stiffness properties were reasonably identified before applying the algorithm. Damping was neglected by assuming 
that the passing period of moving loads over a bridge is relatively short to take into account of damping effects on 
the dynamic responses. Incompleteness of measured data in space and state was considered in developing the 
algorithm. Since a discretized analytical model has been used to express the dynamic behaviors of a bridge, a 
relationship between actual wheel loads and equivalent nodal forces on the model had to be formulated. A database 
of transformation matrix between wheel loads and equivalent nodal forces were constructed as a function of the 
speed of moving loads. 
 
The usefulness of the algorithm could be demonstrated through laboratory tests with reliable results. Regardless of 
the number of trucks running over the model bridge with various constant speeds, the truck loads could be identified 
with AE error less than 3% and RMS error less than 8% in the trial cases. 
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