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Abstract  
 
In this study, a new damage monitoring method using a set of parallel ANNs and acceleration signals is developed 
for alarming locations of damage in PSC girders. The problem addressed in this paper is defined as the stochastic 
process. In addition, a parallel ANN-algorithm using output-only acceleration responses is newly designed for 
damage detection in real time. The cross-covariance of acceleration-signals is selected as the feature representing the 
structural condition. Neural networks are trained for uncertain loading patterns and damage scenarios of the target 
structure for which its actual loadings are unknown. The uncertainty effect on real-time monitoring using the 
proposed method is evaluated from model tests on PSC beams for which accelerations were acquired before and 
after several damage cases.  
 
 
INTRODUCTION 
 
To date, many researchers have focused on developing reliable vibration-based techniques that need to implement a 
series of signal acquisition, data analysis in time and frequency domains, pattern recognition and system 
identification process[3-6]. In order to fulfill the existing damage detection methods which are either signal-based or 
model-based methods, at least three significant amounts of works are needed: (1) to obtain acceleration-response 
signals measured at selected multiple locations, (2) to extract modal parameters such as natural frequencies and 
mode shapes from the signals, and (3) to modify the measured modal information suitable for certain damage 
detection algorithms such as damage index methods, GA-based methods, or ANN-based methods. 
 



Recently, ANN algorithms have been studied for vibration-based damage detection due to the advantage in dealing 
with various types of input and output and the efficient pattern-recognition capability with various training patterns. 
Many researchers have made efforts to develop ANN techniques for identifying the location and the extent of 
damage [8], to implement the ANN techniques using modal data to health monitoring of bridges [1], [6-8]. However, 
most of signal process and modal analyses need off-line works that are time-consuming depending on the number of 
sensors involved and the amount of signals recorded. Also, errors in baseline models cause errors in modal 
parameters and those errors have effects on the accuracy of damage detection.  
 
For the realization of on-line health monitoring, therefore, it is necessary to develop a ANN-based damage detection 
method that uses real-time signals measured from a limited number of sensors, without any further frequency-
domain data-process, to identify the changes in structural conditions. In this study, an ANN-based algorithm using 
acceleration signals is developed for alarming location of damage in PSC girders.  Firstly, theoretical backgrounds 
are described.  The problem addressed in this paper is defined as the stochastic process. In addition, an ANN-
algorithm using output-only acceleration responses is newly designed for damage detection in real time.  As the 
feature representing the structural condition, we select the cross-covariance of two acceleration-signals measured at 
two different locations. By means of the feature, neural networks are trained for potential loading patterns and 
damage scenarios of the target structure for which its actual loading histories are not available.  The feasibility of 
the proposed method is evaluated from numerical model tests on PSC beams for which a series of accelerations were 
acquired before and after several damage cases. 
 
 
REAL-TIME DAMAGE MONITORING METHOD 
 

Problem Statement 
Given a structural system that exhibits the stochasticity in some physical parameters and a set of the dynamic 
responses of that structural system, estimate the physical parameters by knowing the dynamic responses.  Each 
particular function )(tX k , where t is variable and k is fixed, is a sample function. For a pair of stationary random 
processes { })(tX k  and { })(tYk , the mean and variance values are defined as 

[ ])(tXE kX =µ , [ ])(tYE kY =µ                                     (1) 

[ ])()(2 tXtXE kkX =σ , [ ])()(2 tYtYE kkY =σ                               (2) 

For arbitrary fixed t and τ , the cross-correlation, )(τXYR  is given by 

[ ])()()( ττ += tYtXER kkXY                                          (3) 

Furthermore, the normalized cross-covariance function, )(τρXY , which measures the linear dependency between 
{ })(tX k  and { })(tYk  for a displacement of τ  in { })(tYk  relative to { })(tX k  is estimated by  
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ANN Algorithm using Acceleration Signature 
Suppose that we are given an arbitrary structure with NE elements and N nodes, which behaves linearly, the 
acceleration response at a certain location (e.g., a node) evaluated at time t  for a multi-degree-of-freedom system 
can be given by  

( )][][}{][ 1 KXCXFMX ttt −−= − &&&                               (5) 

where [M], [C] and [K] are, respectively, the mass, damping and stiffness matrices of the system; {F} the external 
force vector; and tX , tX& , and tX&&  the displacement, velocity, and acceleration at a certain location. With the pre-
assumable force vector {F}, the patterns of the dynamic responses at a location may be recognized as the 
consequence of the changes in physical parameters at all other locations in the structure. Consequently, the 



acceleration measured before and after damage can be used as the input for the ANN-based damage detection.  We 
select the normalized cross-covariance function, which is described in Eq. (4), to represent two acceleration signals 
measured at multiple locations. So the input layer contains the measured acceleration features, and the outputs are 
element’s physical features as described in Eq. (5). By assuming the mass and damping properties are not changed 
before and after damage, the output layer consists of the element-level stiffness indices to be identified as 

ujdjj kkS ,,=                                      (6) 

where j denotes the element number; d damaged state; and u undamaged state.  The severity of the element is 
defined as  

jj S−= 1α                                      (7) 

Figure 1 schematizes the neural networks algorithm using acceleration features as the input data.  It consists of two 
parts: (a) Training neural networks (TNN) and (b) Alarming damage location (ADL) using the neural networks.   
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Figure 1. Schematic of Acceleration-Based Neural Networks for Damage Detection 

We realize that the values computed for the damage indices will always contain many uncertainties.  Three major 
sources of uncertainty are as follows: first, there are uncertainties associated with the difference between excitation-
force models in TNN and actual loading conditions of the target structure; second, there are variations resulting from 
environmental fluctuations during the test; and third, there are uncertainties associated with the data extraction 
process. To account for all available N sets of neural networks (i.e., the N sets of excitation patterns) we form a 
single indicator (DI) for the jth element as [4]: 
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where ∞≤≤ jDI0  and the damage is located at element j.  Next, we normalize the damage indices 
jDI  according 

to the standard rule 

( ) DIDIjj DIZ σµ−=                                     (9) 

in which DIµ  and DIσ  represent, respectively, the mean and standard deviation of the collection of 
jDI  values.   

 

 



VERIFICATION EXAMPLE 
 

Description of Test Structure 
Numerical tests were performed to evaluate the feasibility of the present ANN algorithm using acceleration features 
as the input. For the verification, a PSC beam was selected as shown Fig. 2 and dynamic responses of the structure 
were numerically analyzed before and after damaging episodes.  The beam length L  is 6.4m and the span length 

rL  is 6.0m. The T-type cross-section is cmcmHB 6071 ×=× . The FE model of the PSC beam is schematized in Fig. 
2. We divided the beam into 15,200 block elements. The elastic modulus of concrete is GPaEc 52.21=  and the linear 
mass density of concrete is 3/2400 mkgc =ρ . The linear mass density of steel tendon is 37850 mkgc =ρ . The elastic 
modulus of steel tendon for nth mode under tension is estimated by equivalent flexural rigidity formula as following 
Eq. (10) [9]. 
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where SI  is the second moment of area of the steel tendon element. The dynamic responses for each mode are 
combined by using superposition method. For the acquisition of the dynamic responses, we used the commercial 
software MIDAS/Civil and MATLAB. 
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Figure 2. Geometry and schematization of FE model for simply-supported PSC beam 

 

 

Trained Neural Networks 
In order to train neural networks, a total of 7 groups are divided as shown Fig. 3. The groups 1~6 are the concrete 
elements and group 7 indicate the tendon elements. For generation of training patterns, exciting impulses were 
applied to L1.0  on the flange and accelerations were obtained at L3214.0  (i.e., station 1) and L5.0  (i.e., station 
2) on the flange as shown Fig. 3.  The sampling frequency of accelerations was set to 1 kHz and total 2,000 discrete 
acceleration data are obtained in 2 seconds duration. Next, several excitation types were selected to simulate 
unknown impulse-loadings.  
 
Four excitation types were selected as shown in Fig. 4.  Neural networks should be trained for the 4 excitation 
types (i.e., Excitations 1-4) and the 43 damage scenarios that included an undamaged case; therefore, a total of 172 
training patterns were considered for damage detection in the test structure.  As shown in Fig. 5, the neural 
networks consisted of three layers: (1) an input layer with 50 units where the first 50 cross-covariance ratios of 
accelerations between before and after damage were input, one after another, (2) a hidden layer with 50 units, and 
(3) an output layer with 7 units which were allocated to the 7 groups of the beam model.  

 

Damage Location 
As shown in Fig. 7, damages were applied by reducing two levels of stiffness at three different groups of the beam.  
Six different scenarios of damage were introduced as follows: (1) Case 1 is a single damage at group 3 with severity 

17.0/ =∆ EE ; (2) Case 2 is a single damage at group 3 with severity 27.0/ =∆ EE ; (3) Case 3 is a single damage at 
group 6 with severity 17.0/ =∆ EE ; (4) Case 4 is a single damage at group 6 with severity 27.0/ =∆ EE ; (5) Case 5 is 
a single damage at group 7 with severity 17.0/ =∆ EE ; and (6) Case 6 is a single damage at group 7 with severity 

27.0/ =∆ EE .  



Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Group 7 (Tendon elements)

Acc. 1 (St. 1) Acc. 2 (St. 2) Impulse

1.2m (0.1875L) 1m @ 4 groups = 4m 1.2m

1.7m (0.2656L)

2.2m (0.3438L)  

Figure 3. Group definition and scheme for acceleration acquisition  
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Figure 4. Excitation patterns to train for unknown external loads 
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Figure 5. Acceleration-based neural networks 
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(a) Acceleration 1          (b) Acceleration 2           (c) Cross-Covariance 

Figure 6. Two acceleration signals and cross-covariance signal for TNN 

 

Accelerations were acquired at the 2 locations (see Fig. 3) before and after each damage scenarios.  The impulse 
was applied to a location 1.7m distanced from the right end by triangular pulse with 0~0.5 sec duration..  Figure 9 
shows acceleration signals measured at station 1 and station 2 and their cross-covariance signal, respectively.  For 
each damage case, 50 cross-covariance ratios of accelerations measured between before and after damage were input 
into the neural networks and stiffness indices of the 7 groups of the test structure were estimated as the output.   
 
Figure 10 shows the estimated stiffness indices of the test structure for the damage case 1.  In this damage case, 
stiffness indices of the 7 groups were estimated by the four different excitation patterns (i.e., Excitations 1-4), 
respectively. For Eq. (8), we set 5.10 =z  corresponding to a confidence level of 93.3%. As shown in Figs. 11(a)-(e), 
damage cases 1 and 2, group 3 was predicted, which is identical to the damaged element. In damage cases 3 and 4, 
group 6 was predicted correctly. However, in damage cases 5 and 6, damage localization was not successful.  
 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Group 7 (Tendon elements)

Damage 1, 2 (△ E/E=0.17, 0.27) Damage 3, 4 (△ E/E=0.17, 0.27)

Damage 5, 6 (△ E/E=0.17, 0.27)  

Figure 7. Damage scenarios for test structure 
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Figure 8. Comparison of two triangular pulses used for TNN and ADL 
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(a) Acc. 1                (b) Acc. 2              (c) Cross-covariance 

Figure 9. Two acquired acceleration signals and cross-covariance signal for ADL 
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(a) Excitation 1           (b) Excitation 2             (c) Excitation 3 

Figure 10. Estimated stiffness indices for damage case 1 
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(a) Damage case 1       (b) Damage case 2            (c) Damage case 3 
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(d) Damage case 4           (e) Damage case 5          (f) Damage case 6 

Figure 11. Damage localization results for test structure 

 
SUMMARY AND CONCLUSIONS 
 
In this study, a new damage monitoring method using a set of parallel ANNs and acceleration signals was developed 
for alarming locations of damage in PSC girders. A parallel ANN-algorithm using output-only acceleration 
responses was newly designed for damage detection in real time. The cross-covariance of acceleration-signals was 
selected as the feature representing the structural condition. Neural networks were trained for uncertain loading 
patterns and damage scenarios of the target structure for which its actual loadings are unknown. The uncertainty 



effect on real-time monitoring using the proposed method was evaluated from model tests on PSC beams for which 
accelerations were acquired before and after several damage cases.   
 
A PSC girder model was selected and dynamic responses were acquired by accelerometers before and after 
damaging episodes. Four (4) excitation types and 43 damage scenarios were selected to train neural networks of a 
PSC girder model.  Initial 50 signal data measured from two accelerometers were input into the neural networks 
and stiffness indices of the 7 groups of the test structure were estimated as the output.  From the damage 
localization process, single-damage cases for cracks were predicted correctly but the damage detection for prestress-
loss was not successful. In the future, it is needed to select efficient excitation models for damage detection of PSC 
girder and to evaluate the practicability of the proposed method by experimental tests. 
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