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Abstract  
 
This paper presents a novel damage detection algorithm using measured acceleration during severe events, such as 
an earthquake. Damage is defined as abrupt change which means a change of system parameter occurs either 
instantaneously or at least very fast with respect to the sampling rate of the measurements. An autoregressive model 
is employed as a transfer function model of non-structural model based scheme (NMBS). Since measured 
acceleration contains a mix of information related to both the damage in the structure and unknown effects such as 
environmental perturbations, a time windowing technique is utilized to deal with environmental changes. The 
covariance between residual errors and coefficients of the autoregressive model is adopted as damage sensitive 
features. According to decreasing time window size and increasing the noise level, the coefficients of the 
autoregressive model will be extremely unstable. A regularization technique is utilized to alleviate this effect and 
stabilize the coefficients of the autoregressive model. A bilinear fitting method (BFM) is utilized to separate outliers 
from ordinary state distribution for more reliable statistical inference. A two-span continuous truss example is 
demonstrated to verify the validity of the proposed algorithm. 
 
INTRODUCTION 
 
Over the last few decades, there has been a significant increase in the health monitoring and safety management 
field of the complex structure. The primary objective of structural health monitoring is to find changes of system 
parameters as soon as possible. There are two categories in structural health monitoring and damage assessment 
whether structural model, such as stiffness, damping and mass information exist or not. One is a structural model 
based scheme and the other is non-structural model based scheme. In the structural model based scheme, system 
parameters are estimated by inverse analysis based on the sensitivity method from a mathematical model. In the 
non-structural model based scheme, structural soundness is evaluated by pattern recognition and a statistical 
approach from only measured signals without a structural model. 
 
Various algorithms for structural health monitoring using static or dynamic responses are proposed. But the main 
problem of the structural health monitoring system is how to handle noises, whereas measured signals contain a mix 
of information related to both the damage in the structure and the perturbations due to the environment. A structural 
health monitoring algorithm with a time windowing technique is employed.[4] In the time windowing technique, the 
residual errors are predicted sequentially within a finite time period which is called time window. The time window 
advances forward at each time step to predict residual errors repeatedly. Perturbations of environment are commonly 
changed gradually during a long time period and time window size is relatively smaller than environmental 
perturbation period so it is assumed that perturbation of the environment can be neglected within the time window. 
 



Covariance between residual errors and coefficients of the AR model is adopted as a new damage feature. Residual 
errors or coefficients are usually adopted as damage features in structural health monitoring using the AR model. 
Residual errors can be influenced by changes of the system parameter and external loading, so it is hard to decide 
the source of changes. The coefficient which is sensitive to damage information and not sensitive to external loading 
is a very good damage feature, but it is highly unstable, so it needs a regularization technique to obtain meaningful 
coefficients.[3] 
 
Deciding whether the considered structure is sound or not using damage feature in every time step is also very 
important.  The bilinear fitting method is utilized for making decision the soundness of the target structure after 
severe events.[2] 
 
The validity and accuracy of the proposed algorithm is demonstrated through numerical simulation studies on a two-
span continuous truss bridge. The numerically generated acceleration data with noise under Kobe earthquake ground 
excitation are utilized as measured signals for the numerical simulation example. 
 
DAMAGE DETECTION ALGORITHM 
 
Autoregressive (AR) Model 
The AR model is utilized to evaluate structural health monitoring system using acceleration signals during a long 
period.[1] The AR model is a widely used stochastic model that can be extremely useful in the representation of 
certain practically occurring series.  
In this model, the current value of the process is expressed as a finite, linear combination of previous values of the 
process and a random error et. Let us denote the values of a process at equally spaced times t, t-1, t-2, … by xt, xt-1, 
xt-2, …. Then 
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is called AR model of order p. Where, φ  is coefficients of AR model, te  is random error in the measured signal at 
time t and p is order of AR model. 
 
Least Square Method 
 
The AR model is expressed with coefficients as weighted regressive form. There are several methods to calculate 
coefficients of the AR model. Least square method is utilized because it is very simple and clear. From Eq.1, 
residual error between estimated value from AR model and measured value at time t is as follows. 
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The first term in the right side of Eq.2 is a measured signal at time t and the second term is the estimated value from 
AR model at time t. After expansion of Eq.2 into considered time periods and minimize residual errors, the linear 
object function by least square method is obtained as shown in Eq.3. 
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Where, T
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p ][)( 1 φφφ L=φ  and N is the total number of measured signals in the 
considered time period. N must be greater than twice of the order p of the AR model. The optimal solution is 
obtained by solving minimization problem. 
 
 
 
 



Time Window Technique 
 
The key difficulty in structural health monitoring is perturbation of measured signals by unknown effects such as 
environmental and instrumental effects. Measurement errors can be reduced according to the improvement of sensor 
technology but perturbation of the environment cannot be reduced. Measured signals are gradually changed 
according to various factors of environment such as day and night, season, temperature and humidity and so on. 
Even if there are no changes in the considered structure, measured signals can be swayed by this environmental 
situation. Almost all previous methods suffer from this difficulty of environmental factors. Though the algorithm is 
performed well in experimental data in laboratory, it cannot be applied in a real structure because of perturbations of 
the environment. 
 
The time windowing technique is adopted to solve this phenomenon. Environmental factors are commonly gradually 
changed during a very long time period. In the autoregressive model with the time window technique, the residual 
errors are predicted sequentially within a finite time period, which is called a time window. The time window 
overlaps and advances forward at each time step to predict residual errors step by step. The time window size is 
relatively smaller than the time period of environmental perturbations so it is assumed that changes of environment 
within the time window cannot happen. 
 
Damage Feature 
 
Both residual errors and coefficients are possible as damage feature in structural health monitoring using the AR 
model. Residual errors can be influenced by external loading as well as changes of system parameter, so it is hard to 
choose abrupt changes of the system parameter. The coefficient which is sensitive to damage information and not 
sensitive to external loading is a very good damage feature, but it is highly unstable. In order to use information of 
residual errors and coefficients instantaneously, covariance between residual errors and coefficients is suggested as a 
new damage feature. 
 
Regularization 
 
Since the number of measured accelerations within the time window cannot be increased, a regularization technique 
must be adopted. The regularized least square estimator is shown in Eq.4. 
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where φ  is the mean value of previously estimated coefficients of AR model and   ⋅  representing the Euclidean 
norm of a vector. 
 
The regularization function, which represents the variance of system parameters in time, is added to the error 
function to overcome ill-posedness of inverse problems. The regularization factor critically effects the stability of 
the solution of Eq.4. The optimal regularization factor is determined by the geometric mean scheme (GMS). The 
recursive quadratic programming with a line search technique is employed to optimize Eq.4. 
 
Decision Making 
 
To decide whether the considered structure is sound or not using estimated damage features from a prediction model 
is also very important. No matter how perfectly the prediction model may work, it is useless without the support of 
the rigorous decision making algorithm. It is unreasonable to decide the health of the structure by merely the 
magnitude of damage features. For more reliable decision making of structural health monitoring, a statistical 
approach is inevitable. The effect of variance from each damage feature can be separated by a bilinear fitting method 
and pick up outliers from the boundary of each distribution. 
 
 
 
 



EXAMPLE 
 
The validity of the proposed structural health monitoring algorithm is verified through a simulation study with a 
two-span continuous truss shown in Figure 1. Typical material properties of steel (Young’s modulus = 210 GPA, 
Specific mass = 7.85 Kg/m3) are used for all truss members. The cross sectional areas of top, bottom, vertical and 
diagonal members are 112.5 cm2, 93.6 cm2, 62.5 cm2 and 75.0 cm2, respectively. The natural frequencies of the truss 
range from 6.6 Hz to 114.7 Hz. Sampling rate is 400 Hz to involve all of the high frequency modes information. The 
damping characteristics are simulated by modal damping ratio 3%~30% in each mode, continuously. 
 
 
 

 
 
 
 
 
 
 

Figure 1. Two-span continuous truss 
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Figure 2. Input ground acceleration from Kobe earthquake 

It is assumed that accelerations are measured with Kobe earthquake ground excitation at centered hinge support in 
the horizontal direction for simulating under earthquake situation. Input ground acceleration is shown in Figure 2. 
This ground accelerations which is a maximum magnitude part are extracted from 40 second full data. Sensing 
points are center of the left span in bottom nodes of the truss in the horizontal direction. It is assumed that abrupt 
change occurs in the considered structure about 4.55 second. Damage is implemented as reduction of cross sectional 
area. The cross sectional areas of top member 9 and bottom member 16 are reduced by 40% and 50%, respectively. 
Damaged members are represented as dotted line in Figure 1. Horizontal direction accelerations are measured 
numerically in the time period from 0 sec to 15.2 sec. The measurement errors are simulated by adding 5% random 
proportional noise to accelerations calculated by the finite element model. 
 
The covariance estimated from regularized least square estimator using measured accelerations with time window 
technique are shown in Figure 3. 
 
The solid line in Figure 4 is the effect to variance from covariance estimated from the AR model.  The dotted line is 
the residual of the least squares fit of covariance in log scale. About two hundred damage features affect huge 
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increase to variance. Therefore, it can be thought that the left side of this boundary is distribution of outliers and the 
right side is ordinary distribution. It is shown that outlier detection result in Figure 5. The solid line is the covariance 
as damage feature and the dotted line is the threshold value from bilinear fitting method. It is clearly shown that two 
damage situation around 4.5 second and 7.0 second. 
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Figure 3. Estimated covariance from regularized AR model 
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Figure 4. Bilinear Fitting result               Figure 5. Outlier Detection result 
 
 
 
CONCLUSIONS 
 
A new structural health monitoring algorithm which is free from perturbations of environment is proposed. 
Covariance between residual errors and coefficients are estimated using an autoregressive model with a time 
window technique is suggested as damage feature. Perturbations of environment can be neglected within a time 
window relatively smaller than the time period of data acquisition. Bilinear fitting method is utilized for a more 
reliable threshold value to make decision of soundness of the considered structure and both damage situations are 
successfully detected. 
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