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Abstract  
 
As for the assessment of bridge health condition, this paper describes an inverse problem solving for unknown 
material parameters using a moving vehicle as an actuator for bridge vibration. An object function for the element 
stiffness index which indicates the ratio of damaged flexural rigidity of the finite element of a beam to undamaged 
one is subtracted from a pseudo-static formulation of equations of motion for a bridge-vehicle interactive system. 
The Damped Least Squares (DLS) and Total Least Squares (TLS) minimizations are adopted for optimization 
methods to solve the inverse problem. An analytical study suggests feasibility of the proposed method for the 
bridge-condition assessment.  
 
INTRODUCTION 
 
The potential economic and life-safety implications of early diagnosis investigation in structures have motivated a 
considerable amount of research in structural health monitoring (SHM) based on vibrational data. Structures in 
many engineering fields are examined through periodic monitoring with the intention of minimizing the safety risk 
on the one hand and lowering maintenance costs to the greatest extent possible on the other hand by carrying out 
rehabilitation at appropriate times. For countries located in earthquake prone regions, after earthquakes, structural 
health monitoring is useful for rapid condition screening. It is also intended to provide reliable information regarding 
structural integrity very rapidly. 
 



An important problem that must be solved in bridge health monitoring (BHM) using vibration measurements is how 
to excite the bridge economically, reliably and rapidly. Ambient vibrations induced by traffic and wind have been 
adopted as dynamic data for BHM (e.g. [1, 2]). 
 
The use of a moving vehicle or train as a source of bridge vibration is especially valuable for bridge structures. An 
advantage of using a moving vehicle as a dynamic source for BHM might be ready excitement of the bridge. 
Another important point is that some highway bridges are tested before and during in-service periods through 
moving vehicle tests. Those traffic-induced vibration data of bridges are available for their condition screening. 
 
This study presents an application of the methodology developed by the authors’ [3, 4] for condition screening of 
bridges using a moving vehicle as a dynamic source of vibration. First, this paper describes a methodology for 
condition screening of bridges using a moving vehicle as a dynamic source of brief vibration. Damped Least 
Squares (DLS) [5] and Total Least Squares (TLS) [6] minimization methods are adopted as optimization tools to 
solve the inverse problem contaminated by noises. Feasibility of the proposed method is verified using a numerical 
example. 
 
CONDITION ASSESSMENT METHODOLOGY 
 

Equations of Motion for Bridge under Moving Vehicle 

The combination of the interaction force at a contact point between the bridge and vehicle provides equations of 
motion for a bridge-vehicle interactive system [7]. The compact matrix formation of the interactive system is 
writable as  

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡ +

+
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡ +
+

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

)(
)(

)(
)(

)(
)()(

)(
)(

)(
)()(

)(
)(

t
t

t
t

t
tt

t
t

t
tt

t
t

vv

br

v

r

vv
T
bv

bvcvbbr

v

r

vv
T
bv

bvcvbbr

v

r

vv

br

f
f

q
q

KK
KKK

q
q

CC
CCC

q
q

M0
0M

&

&

&&

&&

 (1) 

Therein, Ccvb(t) ∈ Rnr×nr and Kcvb(t) ∈ Rnr×nr respectively denote the contribution of vehicle’s damping and stiffness 
to those of the bridge. Cbv(t) ∈ Rnr×nv and Kbv(t) ∈ Rnr×nv are the coupled damping and stiffness matrices between the 
bridge and vehicle systems, where nr and nv respectively denote the DOFs of the bridge and vehicle models. The 
respective mass, damping and stiffness matrices for the vehicle are Mvv∈Rnv×nv, Cvv ∈ Rnv×nv and Kvv ∈ Rnv×nv. In 
addition, qv(t) ∈ Rnv and fvv(t) ∈ Rnv respectively indicate displacement and force vectors of the vehicle. The 
superscript T denotes the matrix transposition. 
 
The system damping and stiffness matrices in Eq.(1) usually consist of time-varying coefficients [7]. Consequently, 
the conventional frequency domain approaches are not directly relevant to assess the current bridge’s health 
condition based on the vibration data taken from a moving vehicle test.  
 

Pseudo-Static Formulation 

Important assumptions used through this study, to make the methodology easy to understand and the numerical 
example simple, are: damage causes a change of the bending rigidity to simplify the derivation; the mass and 
damping matrices of a bridge are assumed to be unaffected by damage; and parameters of the intact bridge and 
vehicle model are estimated initially through vibration experiments.  



Subtracting linear equations for stiffness of a bridge from Eq.(1) of the bridge-vehicle interactive system yields 
Eq.(2) of a pseudo-static formulation to catch the change of stiffness of bridge structures [3, 4]. 

)()( ttrbr fqK =  (2) 

Therein, f(t) ∈ Rnr, and the change of stiffness Kbr in Eq.(2) provides information about the bridge’s current health 
condition, and to detect the change in Kbr is the basic concept of the bridge condition assessment of this study.  
The change of the element stiffness is obtainable using the element stiffness index (ESI) defined as  

ieedeee IEIE )/()(=µ  (3) 

where EeIe denotes the bending rigidity of the e-th element. The subscripts d and i respectively indicate the damaged 
and intact states. A noteworthy point is that the ESI value is unity for an intact bridge: µe = 1 for e = 1, …, M. M is 
the number of elements in a bridge model.  
 
If matrix Le ∈ R2nf×N provides the assembly operator with an element that transforms the element stiffness matrix to 
a structural stiffness matrix in which nf denotes the number of DOFs at a node of an element, then the structural 
stiffness matrix can be written as 
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where Kbe ∈ R2nf×2nf is the intact element stiffness matrix in global coordinates. 
 
Substituting the relationship in Eq.(4) into Eq.(2) of the pseudo-static formulation gives the governing equation of µe 
as 
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where he(t) ∈ Rnr is a coefficient vector of the e-th element at time t. 
 
If x = {µ1; µ2; …; µM}, x ∈ RM, gives the vector of ESI of the bridge and H(t) = [h1(t) h2(t) … hM(t)], H(t) ∈ Rnr×M, 
is a coefficient matrix of a bridge model at time t then Eq.(5) can be condensed as a matrix formation for measured 
data of mt samples taken from a moving vehicle test. 

bxA ˆˆ =  (6) 

where, Â= [H(t0); …; H(tmt-1)], Â ∈ Rnq×M, in which nq = nr × mt, is the coefficient matrix and the observation 
vector b̂∈ Rnq is defined as b̂ = [f(t0); …; f(tmt-1)]. 
 
Equation (6) denotes the pseudo-static formulation in the form of a linear system of equations subtracted from 
equations of motion for the bridge-vehicle interaction without any noise. 
 

If the linear equation in Eq.(6) is contaminated by noise, then it is rewritable as  

bAx ≈  (7) 

where A ∈ Rnq×M, with M < nq, is the coefficient matrix with noise, b ∈ Rnq is the observation vector with noise and 
x ∈ RM is the unknown vector. 



OPTIMIZATION METHOD 
 
A simple solution to the linear equation in Eq.(7) is to use the Tikhonov regularization [5] as one of the damped 
least-squares (DLS) minimization. The DLS minimization of Ax ≈ b is given as 

{ }202min
xxbAx −−− λ  (8) 

where, ║ ║2 denotes the 2-norm of a vector. The second term is the side constraint which stabilizes the problem and 
singles out a useful and stable solution. The regularization parameter λ controls the weight given to minimization of 
the side constraint relative to minimization of the residual norm. The L-curve method [8] is used in this study to 
choose the optimal regularization parameter. The vector x0 is a priori estimate of the solution x. As a priori, unit 
vector is adopted because the ESI value of bridge is assumed to be less than or equal to the unit value. 
 
The TLS approach [6] possesses superior noise rejection properties, differently from the DLS method, in the 
problem that all of the measurement uncertainty is associated with both data and observations. The TLS problems 
take into account independent noises or errors in both data and observations under the assumption of identical 
variances. The TLS problem seeks to 
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where ║ ║F denotes the Frobenius norm of a matrix.  
 
One of the easiest way to obtain the minimum norm solution might be the singular value decomposition (SVD) 
approach, and [ ]bA ˆˆ is estimated as the matrix of rank l closest to [ ]bA . This is also a form of regularization. 
Once a minimizing [ ]bA ˆˆ  is found, then any x satisfying the following Eq.(11) is called a TLS solution. 

bxA ˆˆ =  (11) 

The health condition of bridge structures is detectable directly from investigating the ESI vector x. Determination of 
the ESI vector can also provide information for damage location and its severity. 
 
NUMERICAL EXAMPLE 
 
Numerical Simulation 

Dynamic responses of the bridge and vehicle taken from the simulation are assumed as measured data. The 
simulation for the traffic-induced vibration of the bridge is based on the modal analysis. Dynamic equations for the 
bridge-vehicle interactive system are solved by using Newmark’s β method as a direct integration method. The value 
of 0.25 is used for β. The solution is obtainable with a relative margin of error of less than 0.001. One-fifth of the 
natural period of the highest mode (third mode: 19.85Hz) considered in the simulation is used as the time interval in 
analysis; that is, 0.01 second is used as the time interval. The roadway surface roughness measured at the real bridge 
of the bridge model is used in the numerical simulation. During the simulation the speed of vehicle is assumed to be 
20 km/h. 
 
A bridge with span length of 40.4m, which is idealized as a beam element with 2 DOFs at each node, is adopted as 
the bridge model. The moment of inertia and weight per unit length are, respectively, 0.2197m4 and 74.09kN/m. The 
mass per unit length is 7.552 ton/m. The damping constant of the bridge is assumed as 0.0253 for the first two 



modes. Figure 1 shows the FE model of the observation-bridge with damage scenarios. Therein the abbreviation 
SCN denotes scenario, and the values in scenarios stand for the expected normalized changes in the bending rigidity 
of each member such as the ESI value: for example 0.80 denotes the damaged element with 20% loss of the cross 
sectional moment of inertia compared with that of the intact one. 

 

 

Figure 1. Bridge model and damage scenarios. 

 

 

 
Figure 2. Vehicle model. 

 

 

(a)  

(b)  

Figure 3. Example of dynamic responses of the vehicle and bridges taken from the simulation under a vehicle respectively 
running on the intact and damaged (Scenario II) bridges with speed of 20km/h; (a) acceleration of vehicle’s bounce motion; and 

(b) acceleration of bridge at span centre. 
 



 
A dump truck is idealized as 2DOFs system (see Figure 2) to simplify the numerical example. Properties of the 
dump truck used for this study are: the truck’s gross weight is 191kN, and the respective axle and tandem axle 
distances are 3.99 m and 1.32 m; the respective spring constants of the front and rear axles are 2098kN/m and 
6273kN/m; and, as the damping constant, 6.07kN s/m for the front axle and 18.16kN s/m for the rear axle are used.  
Dynamic responses of the damaged bridge are simulated by reducing the cross sectional moment of inertia of 
elements according to the damage scenario shown in Figure 1. To consider uncertainty in both A and b of Eq.(7), 
simulated Gaussian noises are added to calculated dynamic responses that contribute to both A and b. Noise levels 
of 10% and 20% are adopted, in which the noise level is defined as the ratio of root mean squares (RMS) of 
measurement noise to the RMS value of the calculated noiseless dynamic responses.  
 
Time histories polluted by the noise of 20% noise level are shown in Figure 3, which demonstrates an example of 
dynamic responses of the vehicle and bridge attributable to bridge health conditions. 

Bridge Condition Assessment 

Estimated ESI values using simulated dynamic responses of the bridge and vehicle are summarized in Tables 1, 2 
and 3, where the abbreviation NL stands for the Noise Level, and the Error is estimated from the difference between 
the estimated ESI value and the reference one shown in Figure 1.  

Table 1. Estimated bridge health condition for damage scenario SCN-I 

NL Optimization method Element 1 Element 2 Element 3 Element 4 
Estimated 0.9498 0.7994 0.9646 1.0213 DLS 
Error (%) -5.02 -0.01 -3.54 2.13 
Estimated 0.9687 0.7947 0.9837 1.0255 TLS 
Error (%) -3.13 -0.66 -1.63 2.55 
Estimated 0.9215 0.7307 0.9140 0.9247 DLS 
Error (%) -7.85 -8.66 -8.60 -7.53 
Estimated 0.9620 0.7892 0.9618 1.0281 

10% 
 
 
 
20% 

TLS 
Error (%) -3.80 -1.35 -3.82 2.81 

Table 2. Estimated bridge health condition for damage scenario SCN-II 

NL Optimization method Element 1 Element 2 Element 3 Element 4 
Estimated 0.9897 0.8094 0.8138 0.9861 DLS 
Error (%) -1.03 1.18 1.73 -1.39 
Estimated 0.9872 0.7995 0.8073 0.9784 TLS 
Error (%) -1.28 -0.06 0.91 -2.16 
Estimated 0.9397 0.7629 0.7679 0.9323 DLS 
Error (%) -6.03 -4.64 -4.01 -6.77 
Estimated 0.9916 0.7874 0.8012 0.9700 

10% 
 
 
 
20% 

TLS 
Error (%) -0.84 -1.58 0.15 -3.00 

 



Table 3. Estimated bridge health condition for damage scenario SCN-III 

NL Optimization method Element 1 Element 2 Element 3 Element 4 
Estimated 0.8705 1.0061 0.9784 0.7999 DLS 
Error (%) -3.28 0.61 -2.16 -0.01 
Estimated 0.8929 1.0010 0.9979 0.7812 TLS 
Error (%) -0.79 0.10 -0.21 -2.35 
Estimated 0.8165 0.9327 0.9158 0.7496 DLS 
Error (%) -9.28 -6.73 -8.42 -6.30 
Estimated 0.9223 0.9659 1.0113 0.7519 

10% 
 
 
 
20% 

TLS 
Error (%) 2.48 -3.41 1.13 -6.01 

 
Observations from the tables show that the DLS approach gives a solution within the error less than about 5% in the 
case of considering perturbation with noise level of 10%. In contrast, the TLS approach provides a solution of error 
less than 3.2%.  
 
In considering 20% noise level, the identification error grows up to about 9.3% by means of the DLS approach. The 
TLS approach gives a good solution with the error less than 3.8% even in the case of the noise level of 20%. This is 
because the TLS minimization possesses superior noise rejection properties in the problem of independent noises in 
both data and observations under the assumption of identical variances. However, it is noteworthy that the TLS 
approach adopted in this study is based on the SVD and becomes prohibitive when the dimensions of A become 
large because the SVD algorithm is of complexity.  
 
An interesting result should be described is that the proposed method provides identification of the suspected 
damage members.  
 
CONCLUSIONS 
 
This study presents the feasibility of the methodology for condition screening of bridges using a moving vehicle as a 
dynamic source of vibration through a numerical example. Observations reveal that not only the suspected damaged 
member, but also severity of the damage are detectable using the proposed method. Investigations also suggest the 
feasibility of the proposed method for damage identification of bridges. It is also observed that, even though the 
DLS minimization that is one of the methods of Tikhonov regularization provides good identification results, the 
TLS approach gives the better estimate for the problem of the noise associating with both coefficient matrix and 
observation vector in comparison with those of DLS approach. 
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