
The 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure 
Vancouver, British Columbia, Canada 

November 13-16, 2007 

 

 
 

 

 

 

 

 

 

 

 

BACK ANALYSIS TECHNIQUE FOR THE ESTIMATION OF 
TENSION FORCES ON HANGER CABLES  

 
 

Nam-Sik Kim Dong-Uk Park 
Pusan National University, Korea Pusan National University, Korea 

 
Yong-Myung Park Jin-Hwan Cheung 

Pusan National University, Korea Pusan National University, Korea 
 
 
Abstract 
 
In general, the tension forces of hanger cable in suspension bridges play an important role in evaluating the bridge conditions. 
The vibration method has been widely applied to estimate the tension forces by using the measured frequencies on hanger 
cables. However, the vibration method is not applicable to short hanger cables because the frequencies of short cables are 
severely sensitive to flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is 
shorter than 10 meters, were estimated through back analysis of the cable frequencies measured from Gwangan suspension 
bridge in Korea. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a 
rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and the vibration method are 
compared with the design tension forces. From the comparison, it can be inferred that back analysis results are in more 
reasonable agreement with the design tension forces of short hanger cables. Therefore, it is concluded that back analysis 
applied in this study is an appropriate tool for estimating tension forces of short hanger cables.  
 
 
INTRODUCTION 

 
Recently, it is common for long span bridges to be designed and constructed by the development of cable materials that can 
endure high tension force, advanced design and construction techniques, and maintenance based on sensing techniques. A 
critical member of suspension bridges as a long span bridge is the suspended and hanged cables which can resist the dead and 
live loads. Thus, it is very important that not only introducing tension forces on the cables during construction, but also 
estimating tension forces after completion to verify the safety and stability of bridges. 
 
As a nondestructive method, tension forces on hanger cables would be estimated based on theoretical equations. In a few 
cases, the static method (Ahn and Lee 2003) using the relationship between statically measured loads and displacements has 
been used for estimating tension force. The vibration method, known as the conventional method, has been widely applied to 
estimate the tension forces by using the measured frequencies on hanger cables. The vibration method can be normally 
classified into single mode method (Zui et al. 1996) and multi mode method (Shimada 1995). Both methods were established 



based on the cable equation of motion (Irvine 1981) considering the flexural rigidity of cable, but could not accurately 
estimate tension forces on the cables with large flexural rigidity. Therefore, the conventional vibration methods are not 
applicable to estimate tension forces on short hanger cables. 
 
In this study, the hanger cables of Gwangan suspension bridge located in South Korea were used as a field example of 
estimating tension forces. The vibration method using multi modes (Shimada 1995) has been frequently applied to 
comparatively long hanger cables. However, in case of short hanger cables less than 10 meters, the back analysis technique 
proposed in this study is able to be applied to short hanger cables dominantly affected by flexural stiffness. 
 
In the back analysis technique (Kim and Jeong 2005, Jeon and Yang 2005), forward analysis can be performed by using a 
commercial structural analysis program with a function of a common mathematical algorithm through simple modeling and 
modification. A difference between the calculated frequency from numerical model and the measured frequency from existing 
hanger cable is defined as error function, and the error function is minimized by using optimization algorithm and 
compensation factor. For unconstrained optimization, the univariate search method (Rao 1996) employed in this study is one 
of one-dimensional search methods in which a variable is varied at one time and the others are fixed for improvement of 
approximate value (Gioda and Maier 1980). 
 
From the measured frequencies on the hanger cables, the flexural stiffness effect was discussed with the comparison resulting 
from back analysis and conventional vibration methods. As a result, it can be confirmed that the back analysis technique is 
more reliable for estimating tension force on short hanger cables dominated by flexural stiffness effect. 
 
 
CONVENTIONAL METHODS 
 
Vibration Method I (Using single mode)  
The flexural stiffness effect on cables can be decreased according to the increase of ξ, which is a dimensionless parameter 
presenting flexural stiffness effect of cables. Vibration motion of cables with large value of ξ is nearly similar with one of 
strings. In the case of ( ) /( ) 17T EI Lξ = ⋅ ≥ , influence of flexural stiffness can be negligible and cable vibration is 
dominated by tension force and length of cables. Therefore, ignoring the sag effect of cables, tension force of cables (Zui et al. 
1996) could be estimated by equation (1), in which the measured first natural frequency can only be used. 
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where f1 is the measured first natural frequency and C is 4( ) /( )EIg WL . 
 
Vibration Method II (Using multi modes) 
In general, an equation of motion for cable structures considers flexural rigidity, tension force and mass distribution of cables. 
Thus, the tension force of existing cables could be estimated by the measured natural frequencies corresponding to cable 
vibration modes. In a cable model as shown in Fig. 1, equation (2) can be constituted by using dynamic displacement of 
gravity direction v(x, t)at time t and length x (Irvine 1981). 
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where T is tension force of cable, EI flexural rigidity, w unit weight, and g acceleration of gravity. Equation (2) as a partial 
differential equation can be solved with various conditions. Equation (3) (Shimada 1995) has been normally used for multi 
mode vibration method, which is to obtain the linear relationship between (fn/n)2 and n2, where n is the order of vibration 
mode, fn is the nth natural frequency. In the vibration method using multi modes, the relationship between (fn/n)2 and n2 could 
be derived as follows: 
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If a constant b in equation (3) can be obtained from linear regression using the measured natural frequencies and the 
corresponding orders of vibration mode, tension force of cable could be estimated by using equation (4). 
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BACK ANALYSIS TECHNIQUE 
 
As one of unconstrained optimization techniques, the univariate search method employed in this study is a one-dimensional 
search method in which a variable is varied at one time and the others are fixed for improvement of approximate value (Rao 
1996). This method is an ordinal application of one-dimensional search as shown in Fig. 2. The unknown variable X could be 
estimated by optimizing error function f(X) and performing back analysis. The error function as shown in equation (5) can be 
presented as follows: 
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Figure 1. simply supported cable model      Figure 2. Optimal point searching process of 

       one-dimensional search 
  
 
 
where ( )kU X  is the measured term, Uk(X) the predicted term by back analysis. In this study, the unknown variable X is the 
tension force of cable, ( )kU X  is the measured natural frequency and Uk(X) is the predicted natural frequency by back 
analysis. For minimizing the error function, the parameters can be used in equation (6): 

*
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where Xi is tension force, λi

* step length and Si is searching direction at each step. 
Fig. 3 shows a flow chart of back analysis algorithm employed in this study. In equation (7), the unknown variable is 

Ti as a cable tension force and the design tension can be assumed as an initial force. In equation (7), λi
* is step length: 

* ( 1)Ti i iλ β= −                       (7) 
 

 

As a compensation factor, βi is presented using the weighting factor and frequency ratio as shown in equation (8) : 
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where Wi is the modal participation factor corresponding to the ith vibration mode. And searching direction Si can be defined as 
unity. Convergence criterion in this optimization algorithm could be defined as relative error of unknown parameter Ti in 
equation (9) : 
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According to Fig. 3, back analysis could be performed by comparing the predicted frequencies (fk) resulted from structural 
analysis program with the frequencies ( kf ) measured from existing cables. 
 
 
 
 
 
 
 
 
 



ESTIMATION OF CABLE TENSION FORCES 
 
Vibration measurement and analysis 
Gwangan Bridge, as a suspension bridge located in Busan Korea, was selected for an example in this study and its main 
properties are summarized in Table 1. Long hanger cables are located near the main tower and short hanger cables are located 
around the center of the main span. In this study, not only long cables but also medium and short cables are chosen, as shown 
in Fig. 4, in order to verify the tension force estimation method which can be applied to most hanger cables not depending on 
cable length. 9 cables (No. 22, 29,  
 
 

Table 1. Properties of Gwangan Bridge 
 

Dimension Total length : 900m (main span : 500m side span : 200m)  
total 3 spans 2 hinges, width : 24m 

Type Suspension bridge 
Anchor block Reinforced concrete block for strand settlement and maintaining cable tension force 

Concrete 186,276m3,  rebar 18,467ton 

Main Tower 

Rigid tower supporting cables which are hanging reinforcing truss 
Foundation : Bell Type pile foundation, 
Height (from sea level) : 116.5m(octagon shape) 
Size : 4×5～6.5×105m, material : steel weight : 6,480 ton 

Main 
cable 

Wire diameter : 5mm, 11,544 strips  
Cable(diameter 60.6cm) → consist of 37 strands, 
1 Strand : consist of 312 wires 
Tension force : 24,500ton(12,250×2 Cables) 

Reinforce 
Truss 

Waren truss assembled square shape and cylindrical steel materials 
Total steel weight : 23,708ton(steel deck 9,286ton, truss 14,422ton) 
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Figure 3. Optimization procedure of univariate search method 

 
 

36~42) placed on beach side were selected as a target for cable tension force estimation. Each cable band is connected to two 
cable groups; one group consists of two hanger cables as shown in Figs. 5 and 6. One group of cables on each 9 cables, 
designated as group A, was applied to back analysis and vibration method. The properties of selected hanger cables are shown 
in Table 2. 
 
Length of each hanger cable is presented in Table 2 and diameter of hanger cables is a representative of the area of hanger 
cable twisted by wires. For numerically modeling the hanger cables, it was assumed that boundary conditions at both ends are 
defined as hinge supports, and the design tension force is defined as an initial tension force of hanger cables. 
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Figure 4. Hanger cables selected for tension force estimation 
 
 
 

Table 2. Properties of selected hanger cables 
 
 
 
 
 
 
 
 
 
 
 
 
Under ambient vibration condition, cable responses were measured by using acceleration sensors which were attached in a 
transverse direction on hanger cable, as shown in Fig. 7. The measuring conditions are as follows: sampling rate is 200Hz, 
time interval is 0.005 second, minimum measurement duration is 100 seconds, number of data per channel is more than 20000, 
and frequency resolution (∆f) is about 0.012Hz. 
 
For easily obtaining multi vibration modes of hanger cables, acceleration responses were acquired under ambient vibration 
condition. However, in searching all over signals measured under ambient vibration condition, there were several cases not 
satisfying with vibration mode range. And some cases are hard to define exactly the order of each vibration mode. Moreover 
because the acceleration sensors were attached near a cable support in field condition, the higher modes mainly affected by 
flexural stiffness are outstandingly measured. Therefore, for exactly distinguishing the order of vibration modes, an 
eigenvalue analysis was carried out by using the transverse responses measured from two cables connected by a hanger band 
under ambient vibration condition. As a result, vibration methods and back analysis can be performed with only transverse 
response of the two cables because of considering the effect of hanger clamp. 
 

   
Figure 5. Hanger cables for         Figure 6. Two groups of       Figure 7. Accelerometers 

              measurement                    hanger cables               attached on hanger cables 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Acceleration response of No. 39 cable       Figure 9. Power spectrum of Fig. 8 

Cable ID length 
(m) ξ diameter 

(mm) 
Young's modulus 

(kN/mm2) 
weight 

(kN/mm3)
design tension 

(kN) 
22 50.850 155.2080 
29 25.323 77.2934 
36 8.833 27.5231 
37 7.270 22.6850 
38 5.891 18.4167 
39 4.699 14.7143 
40 3.691 11.5775 
41 2.869 9.0048 
42 2.232 6.9976 

49.52 1.3734×102 8.0×10-8 377.685 

22 29 36 42 To the Gwang-An-Ri To the Hea-Un-Dae 



Figure 8 shows the transverse acceleration response of No. 39 cable under ambient vibration condition and its power spectrum 
is presented in Fig. 9. The measured natural frequencies of hanger cables under ambient vibration condition are summarized 
in Table 3. 
 
Back analysis results 
In this study, the hanger cables are modeled in beam element for considering flexural stiffness effect with cable lengths. Fig. 
10 shows convergence processes of tension force on hanger cables by repetitive execution of back analysis. A difference 
between the calculated frequency from the numerical model and the measured frequency from the existing hanger cable is 
defined as an error function, and the error function is minimized by using the optimization algorithm and compensation factor. 
The modeling was limited in X-Z plane and both ends of hanger cables were assumed to hinge support for idealization of back 
analysis modeling. Even if there is no numerical error of cable tension at the convergence of back analysis as shown in Fig. 10, 
it is not evident that the converged tension values are feasible. Thus, in Fig. 11, the calculated frequencies on the hanger 
cables are compared with the measured ones. 
 
Fig. 11 shows that the calculated natural frequencies are close to the measured natural frequencies through the convergence of 
back analysis. In some cases, the calculated frequencies resulted from initial analysis are a little closer to the measured 
frequencies than the calculated frequencies at convergence of tension force. However, it may be reasoned 
 
 
 
 

Table 3. Measured natural frequencies of hanger cables under ambient vibration condition 
 

Measured Frequency (Hz) Mode 
22-A 22-B 29-A 29-B 36-A 36-B 39-A 39-B 

1st 1.57 1.55 3.22 3.05 9.40 9.20 16.77 16.72 
2nd 3.13 3.11 6.45 6.09 16.01 15.47 29.29 30.31 
3rd 4.75 4.66 9.62 9.14 23.12 22.60 60.00 63.09 
4th 6.33 6.23 12.66 12.01 34.78 34.54 96.70 94.37 
5th 7.93 7.81 15.36 14.58 49.17 48.73 - - 
6th 9.46 9.38 18.09 17.21 65.01 65.75 - - 
7th 11.20 10.96 21.37 20.37 84.11 85.44 - - 
8th 12.61 12.38 25.06 23.95 - - - - 
9th 13.96 13.72 28.71 27.66 - - - - 
10th 15.42 15.18 - - - - - - 
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Figure 10. Convergence Processes of tension force on hanger cables 
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(a) No. 22 cable                         (b) No. 29 cable 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) No. 36 cable                           (d) No. 40 cable 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

(e) No. 41 cable                           (f) No. 42 cable 
  

Figure 11. Comparison of the calculated and measured frequencies 
 
 
that in the first natural frequency having a dominant vibration mode, the calculated frequencies are nearly coincided with the 
measured ones. Considering the modal participation factor in most cases of back analysis, the frequencies at convergence of 
tension force by back analysis are well conformed to the measured frequencies. 
 
Comparison of back analysis with vibration method result 
Table 4 and Fig. 12 show the estimated tension forces and differences between vibration methods and back analysis. The 
estimated values that resulted from all methods are obtained near the design tension force when the flexural stiffness effect of 
hanger cables could be ignored (ξ ≥17). When the natural frequencies of cables are largely affected by the flexural stiffness 
(ξ<17), the estimated values of vibration methods are deviated from the design tension value. On the other hand, the tension 
values estimated by back analysis are reasonable at the design tension level. 
 
 
CONCLUSIONS 
 
In this study, the conventional cable tension estimation methods as single mode and multi mode vibration methods and the 
back analysis technique newly proposed were used for estimating the tension force hanger cables. The concluding remarks 
can be drawn as follows: In the case of comparatively long cables(ξ ≥ 17), as No. 22(ξ =155.21) ~ No. 35 (ξ = 27.52) cables, 
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the estimated tension forces of all methods are similar with design tension force. Therefore, all three methods could be used to 
estimate tension force for comparatively long cables. However, in the case of comparatively short cables, as No. 40 ~ No.42 
cables, vibration methods could not be applied because differences are more than 50% from design tension. On the other side, 
the back analysis results are efficient to apply to comparatively short cables, as differences of back analysis are less than 22% 
from design tension force. Moreover, back analysis has much room to improve accuracy depending on updating the numerical 
models and measurement techniques. It can be concluded that the back analysis technique considering numerical models and 
modal participation factors is more applicable to estimate the tension force of hanger cables than 
 
 

Table 4 . Estimated tension and difference from vibration methods and back analysis 
 

Vibration Method Back Analysis 
Single Mode Multi Modes Multi Modes Cable 

ID ξ  
Design 
tension Estimated 

Tension
Difference

(%) 
Estimated 
Tension 

Difference
(%) 

Estimated 
Tension 

Difference 
(%) 

22 155 389.76 3.20 412.32 9.17 322.07 -14.73 
29 77 395.38 4.69 410.75 8.75 324.14 -14.18 
36 28 415.58 10.04 317.91 -15.83 344.87 -8.69 
37 23 505.86 33.94 559.01 48.01 451.90 19.65 
38 18 387.22 2.53 368.14 -2.53 379.20 0.40 
39 15 298.26 -21.03 290.09 -23.19 407.36 7.86 
40 12 135.38 -64.15 149.01 -60.55 310.13 -17.89 
41 9 63.920 -83.08 64.50 -82.92 329.52 -12.75 
42 7 

377.69 

-10.64 -102.82 -180.80 -147.87 292.42 -22.57 
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Figure 12. Comparison of estimated tension forces from vibration methods and back analysis 
 
the conventional methods, as vibration methods, because the frequencies of short cables are severely sensitive to flexural 
rigidity. 
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