Curriculum Reform Needs for Civil Engineering Education in the USA

JOSE M. ROESSET

CIVIL ENGINEERING DEPARTMENT – TEXAS A&M UNIVERSITY

MANY CONFERENCES, WORKSHOPS, AND SCHOLARLY PAPERS PRESENTED **OVER THE LAST 20-30 YEARS SUGGEST DISSATISFACTION WITH PRESENT ENGINEERING EDUCATION**

THERE IS A BELIEF THAT

UNIVERSITIES DO A GOOD JOB AT:
TEACHINTG BASIC SCIENCE &
ENGINEERING THEORY, AT FORMING
RESEARCHERS & ACADEMICS

BUT NOT AT EDUCATING ENGINEERS FOR ENGINEERING PRACTICE

BORDOGNA (1998) saw the Civil Engineer of the 21st century as the MASTER INTEGRATOR

PRESENT CURRICULA DO NOT PREPARE STUDENTS FOR THIS ROLE!

The Engineering Dean's Council and Corporate Roundtable (1994) recommended that universities expose engineering students to:

- Fundamentals of science
- Engineering Disciplines
- The broad world of practical engineering
- Teamwork
- Communication Skills
- Leadership

WHAT THEY REALLY WANT

IS

NEW RENNAISSANCE ENGINEERS

Characteristics of Renaissance Engineers

- Breadth of knowledge and interests
- Familiarity with the latest technologies and understanding of the relation to classical work
- Concern and appreciation for all aspects of engineering and the built environment

ENGINEERING EDUCATION IN THE U.S.

BEFORE SPUTNIK

- Emphasis on Professional /Practical Courses
- All Professors had Practical Experience
- American Engineers known as Doers

ENGINEERING EDUCATION IN THE U.S.

AFTER SPUTNIK

- Emphasis on Basic and Engineering Science
- More theoretical courses at the expense of practice
- Reduced Laboratory work
- Reduced Design / Construction Content

SOME PROBLEMS WITH PRESENT ENGINEERING CURRICULA IN THE U.S.

- Lack of continuity/coordination in coursework
- Excessive emphasis on theory
- Lack of practical examples and real cases
- Lack of open ended problems
- Fragmentation of analysis/design/construction
- Students do not acquire intuitive feeling/understanding of real behavior

EDUCATIONAL INITIATIVES

- **OASCE CONFERENCES/SESSIONS**
- **ONSF INITIATIVES/COALITIONS**
- **ONAE STUDY**
- **OABET 2000**
- **OASCE BOK**

DESIRED CURRICULUM TOPICS

- Programming/Planning of Facilities
- Public Sector Issues
- General Facility Design
- Construction Planning/Execution
- Performance Monitoring
- Retrofit, Rehabilitation

Questions

• How many and what type of engineers does society need?

• How many and what types of engineers can we form /educate?

Types of Engineers

Researchers

Global Megaproject Managers

Facility Designers/Builders/Operators

Regular Designers

Regular Builders

ADDITIONAL QUESTIONS

Can we form the desired types of engineers in 4/5 years?

• How much will they learn in school and how much in practice?

Should the undergraduate/graduate curriculum be the same for all types of engineers?

SUGGESTED IMMEDIATE ACTIONS

Incorporate Real Cases in Coursework

- Integrate planning/Design/Construction/Operation
- Use Visual Design/Construction Lab

Collaborate with Professional Engineers

DESIGN/CONSTRUCTION INTEGRATION

- MUST COMBINE DESIGN OF STRUCTURES, FOUNDATIONS, OTHER SUBSYSTEMS
- MUST INCLUDE CONSTRUCTION PLANNING THROUGHOUT DESIGN
- VIRTUAL CONSTRUCTION MODELLING ALLOWS 3 SPACE DIMENSIONS + TIME LEADING TO DYNAMIC MODELING

VIRTUAL DESIGN/CONSTRUCTION LABORATORY

- COMPUTERIZED 3-D VIRTUAL REALITY IS THE TECHNOLOGY THAT BRUNELLESCHI WOULD USE TODAY
- SUCCESSFUL CONSTRUCTION ENGINEERS ARE VISUALLY ORIENTED; <u>BUT</u> ENGINEERING EDUCATION IS PROBABLY ONLY REACHING ONE SIDE OF STUDENT BRAIN
- MUST REPLACE 2-D DRAFTING & SCHEDULING WITH 3-D DESIGN USING SOLID MODELS & TIMED CONSTRUCTION SIMULATION

CLOSURE

- EDUCATING CIVIL ENGINEERS FOR SUCCESS IN THE 21ST CENTURY WILL REQUIRE SIGNIFICANT CHANGES IN THE U.S. APPROACH
- FOUR YEARS (120-128) DEGREE HOURS ARE INSUFFICIENT
- COURSES MUST INVOLVE REAL CASE STUDIES
- PRACTITIONERS MUST BE WILLING
 COLLABORATORS IN THE NEEDED CHANGES