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Abstract 
 
System identification involves identification of a behavioral model that best explains the measured behavior of a 
structure. Unlike traditional studies that focus on identifying parameters in a single model for system identification, 
this research uses a strategy of generation and iterative filtering of multiple candidate models. Robert Nicoud et al. 
[1] used stochastic search for generation of a set of candidate models that could represent the behavior of a structure. 
Exploring this often large set of candidate models without suitable computing tools is difficult. In this paper, a data 
mining based methodology is proposed to cluster models thereby providing information related to model 
distribution. An application of the methodology to a full-scale bridge is shown. From the distribution of models and 
their predictions, it is possible to identify the best location for the next measurement. Measuring at this location 
reduces the number of candidate models and this leads to more rapid identification of the correct model. The bridge 
example demonstrates how this is done.   
 
 
 
INTRODUCTION 
 
Sensor-based monitoring and diagnosis of structures is a rapidly evolving field in the domain of structural 
engineering. Advances in sensor technology have provided engineers with a wide variety of sensors that are capable 
of measuring various types of structural response. The task of interpreting these measurements, however, remains 
problematic for engineers. System identification [2] is the task of determining the state of the system from 
measurements. Research in system identification has focused on model updating or model calibration techniques [3, 
4] that estimate values of unknown parameters of a mathematical model of the structure. These techniques are based 
on the assumption that the model that best fits measurements is the correct model. However, Robert-Nicoud et al. [1, 
5] showed that this assumption may be false due to the presence of compensating errors in modeling and 
measurement. They proposed a strategy involving generation and iterative filtering of multiple candidate models for 
system identification. 
 



Robert-Nicoud et al. [1, 5] used stochastic search to generate sets of candidate models. The objective function of the 
stochastic search is defined as the root mean square error between measurements and corresponding model 
predictions. It was proposed that models which have a root mean square error less than a certain threshold value, are 
equally capable of representing the measured structure. For a complex structure, large numbers of candidate models 
are generated by stochastic search. Engineers need computing tools to infer meaningful information from model 
sets. For instance, engineers may want to know where to take the next measurement to filter models most efficiently. 
This paper explores the support that data mining tools can provide to engineers during the system identification 
process. 
 
Data mining methods have been successfully applied to tasks such as image recognition [6], speech processing [7] 
and web mining [8]. Many applications of data mining techniques to structural health monitoring also exist in 
literature. Posenato et al. [9] have used principal component analyses for detecting structural damage by analyzing 
time series data from sensors. Bulut et al [10] have employed statistical pattern recognition tools for vibration-based 
monitoring of structures. A key aspect of these data mining applications is that they detect damage by operating 
directly on measured data. However, multiple model system identification requires data mining techniques that can 
extract knowledge from candidate model sets generated by stochastic search.  
 
In this paper, clustering techniques [11, 12] are proposed to extract useful knowledge from candidate model sets and 
assist with identification of subsequent sensor locations. The objective of clustering is to group together models 
according to a distance metric. The clustering algorithm identifies numbers of clusters in model sets and when 
possible generates clusters that are compact and well-separated. A new measurement at an appropriate location 
should eliminate the maximum number of models. An algorithm that finds this best location for the next 
measurement based on cluster information is presented. The methodology is illustrated for the Schwandbach bridge 
in Switzerland. Models generated using stochastic search are grouped using the clustering algorithm and the next 
location for measurement is identified. The proposed methodology is also compared with one that does not involve 
clustering. 
 
 
MULTIPLE MODEL SYSTEM IDENTIFICATION 
 
In conventional system identification [3], a suitable model is identified by matching measurement data with model 
predictions. This involves identifying values of model parameters that minimize the difference between predictions 
and measurements. These methods are based on the assumption that the model that best fits observations is the most 
reliable model. This assumption is flawed due to the following reasons: (1) system identification is an inverse 
problem and thus, multiple models can predict the same measurements, and (2) errors in modeling and measurement 
[1, 13, 14] may compensate such that the model that best predicts the measurements is not the correct model. 
Therefore, a strategy of generation and iterative filtering of multiple models is necessary for identification. 
 
Figure 1 represents the framework for multiple model system identification [1, 5, 15]. The framework supports an 
iterative process that employs measurements for identification and then information from identification to improve 
the measurement system. The framework involves four modules: (1) model generation module, (2) data mining 
module, (3) measurement system design module and (4) engineer-computer interaction module.  
 
Modeling assumptions and measurements from existing measurement system are provided by engineers. Given 
these, the model generation module generates candidate model sets for the data mining module. Modeling 
assumptions define the parameters for the identification problem. The set of model parameters may consist of 
quantities such as elastic constant, connection stiffness and moment of inertia. Each set of values for the model 
parameters corresponds to a model of the structure. The model generation module uses an objective function to 
evaluate the quality of candidate models. The objective function E is defined as follows. 
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ε is the error which is calculated as the difference between predictions pi and measurements mi. τ is a threshold value 
evaluated from measurement and modeling errors in the identification process. The set of models that have E = 0 
form the set of candidate models for the structure. Stochastic search [16] is used to generate candidate model sets.  

  

 
 

Figure 1. A framework of system identification tasks. 
 
Generated model sets are examined by the data mining module. Data mining techniques are used to extract 
relationships between models and group similar models. This information is used by the measurement system design 
module to determine locations for subsequent measurements. The model generation module, data mining module 
and measurement system design module involve various degrees of engineer-computer interaction and this 
interaction is handled by the engineer-computer interaction module. For instance, this module has visualization tools 
for displaying results from the data mining module.  
 
This paper focuses on the role of the data mining module in multiple model system identification. Specifically, the 
support that clustering techniques can provide for identifying the correct model for the structure is discussed. 

  
 
DATA MINING MODULE 
 
The correct model for the structure should be contained in the model sets given by model generation module. 
Clustering techniques aid in eliminating incorrect models from these model sets and thus rapidly converge to the 
correct model. To cluster models, a methodology that combines principal component analysis [17] and K-means 
clustering [12] is developed.  
 
Principal Component Analysis (PCA) 
PCA is a method for linearly transforming data in parameter space to a new and uncorrelated feature space [17]. In 
the machine learning community, PCA is usually used as a preprocessing technique, for example before a 
supervised learning algorithm. In this research, PCA is also used for visualization purposes. It is difficult to visualize 
clusters when clustering techniques such as K-means are directly applied to model sets of dimensionality greater 
than three. PCA finds a set of principal components (PC) that are sorted such that the first few components explain 
most of the variability in the model sets. By plotting the two first PC instead of two randomly chosen parameters, 
the clusters are easier to see.  
 
The first step in evaluating the principal components of a data set is the construction of the covariance matrix S. The 
formula for evaluating S is given below. 

Result visualization 

Engineer-computer interaction module 

Measurement system design 
module 

Model generation module 

Data mining module 

Modeling assumptions 
+ measurements 

Engineer 



 

1
cov( , ) ( )( )

N

ij k k
k

S x y x x y y
=

= = − −∑  (2) 

 
Sij represents element at the ith row and jth column of S. x and y are the ith and jth parameter and x and y  are their 
respective means. N is the number of samples. The particular case of cov(x, x) corresponds to the variance of 
parameter x. After constructing S, its eigenvectors and eigenvalues are found (more details can be found in [17]). 
The principal components are obtained by sorting eigenvectors in decreasing order of their eigenvalues.  

 
K-means Clustering 
K-means [12] is a widely used clustering algorithm that is simple to understand and implement. However, it is 
effective only when applied and interpreted correctly. The K-means algorithm divides the data into K clusters 
according to a given distance measure. Although the Euclidean distance is often chosen as the distance measure, 
other metrics may be more appropriate in certain cases. The algorithm iterates over K clusters in order to minimize 
their intra-cluster distances, shown as the measure J in Equation 2: 
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K is the number of clusters, xi is the ith data point and cj is the centroid of jth cluster Dj. The K starting centroids are 
chosen randomly among all data points. The data set is then partitioned according to the minimum squared distance 
J. The cluster centers are updated by computing the mean of the points belonging to the clusters. The process of 
partitioning and updating is repeated until a stopping criterion is reached. The stopping criterion is attained if there is 
no significant change in the values of cj or Equation 2 over two consecutive iterations of the algorithm. 
 
The methodology for grouping models into clusters combines PCA and K-means. Model sets in parameter space are 
transformed using PCA into an uncorrelated feature space. Next the best number of clusters is estimated using a 
score function [18]. Once the number of clusters is known, K-means algorithm is applied to the data in feature 
space.  

 
 
CLUSTERING FOR SYSTEM IDENTIFICATION 
 
The purpose of system identification is to eliminate incorrect candidate models and converge to the correct model. 
Subsequent measurement locations that are found using cluster information help in achieving this goal. The 
proposed clustering procedure is completely integrated into the overall methodology for system identification. The 
methodology can be divided in two phases: i) original measurement system design and ii) periodic monitoring.  
 
During the original measurement system design phase, engineers provide modeling assumptions that define 
parameters of the structure. Stochastic sampling is used to generate model sets. A global search [19] uses these 
model sets to determine the optimal number and position of sensors for the starting measurement system.  
 
Figure 2 shows a flowchart with the methodology for system identification during the periodic monitoring phase. As 
in the initial measurement system design phase, engineers provide structural assumptions that define the parameter 
set for the problem. 
 
The next step, model generation, creates a set of candidate models that may represent the real state of the structure 
using stochastic search. Measurements, a set of model parameters and an objective function (Equation 1) that 
defines candidate models are needed to generate the set of candidate models.  
 
Once the models have been generated, the described clustering algorithm is used to group models. Models are 
grouped into clusters to i) facilitate visualization of the model space and ii) reduce the number of models given to 
the engineer (the centroid of the cluster is a possible representative model for the entire cluster). Visualization of 



clusters is improved through the use of principal components. As described earlier, PCA is first applied to models 
before the K-means algorithm is used.  
 
In the representative model selection step, a few models representing each cluster are selected. Only models which 
are close to the center of the cluster are selected. In this study, 5% of the total number of models in each cluster are 
taken to be representative models. 
 
After clustering, entropy [20, 21] is used as a measure of model separability to identify the next measurement 
location. Entropy Hs of model sets at measurement location s is given by the following equation. 
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Pi is the probability of the ith interval in the prediction distribution at location s. Pi is calculated as the ratio between 
the number of models that have predictions within the ith interval and the total number of models. If model sets have 
high values of entropy, more candidate models can be filtered. Then the next step is sensor addition and further 
measurements. If the entropy of predictions is not significant (close to zero), then it is checked if there are multiple 
clusters. If true, it means that the current set of measurement locations is incapable of further filtering models. The 
engineer has to provide other measurement locations to the algorithm in order to find the correct model. If there is 
only one cluster and the entropy is close to zero, center of all remaining models is given to the engineer as the 
correct model for the structure (model identification step).  
 
During the sensor addition and further measurements step, the entropies  of selected representative models are used 
to find the position of the next sensor. The location with the highest entropy is chosen as the best position for the 
next measurement. Then, the measurement is taken on the structure.  
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Figure 2. Flowchart showing the methodology for iterative sensor placement using multiple models. The human icon 
means that user interaction is required. 

 



In the model filtering step, sensor measurement at the new location is compared for every candidate model. 
Candidate models that do not predict the measurement are eliminated from the current set of models. If there are 
models left, then the next step is clustering. However, if no models are left, then it is likely that all models were not 
generated by the model generation module. While it may be possible to generate all models for a simple problem, it 
is practically impossible to generate all possible models in a complex structure. In that case, the model generation 
phase is revisited. On the other hand, if all models have been generated, then some assumptions related to modeling 
the structure are incorrect. Therefore, structure assumptions have to be checked and modified by the engineer. This 
methodology is illustrated for the Schwandbach bridge in Switzerland. 
 
 
SCHWANDBACH BRIDGE 
 
The Schwandbach Bridge  [22] (see Figure 3) designed by Maillart in 1933 is an early example of a deck stiffened 
open-spandrel arch. The elliptic horizontal ground-plan curve that is supported by a vertical curved thin-walled arch 
is also an example of daring structural engineering that has inspired engineers for over seventy years. The proposed 
methodology is demonstrated for identifying connection behavior of the Schwandbach bridge.  
 

 
 

Figure 3. A schematic diagram of the Schwandbach Bridge (1933). 
 

Connection behavior is difficult to understand in most structures. While they are modeled as fully hinged or fully 
rigid during design, it is well-known that connections exhibit semi-rigid behavior in practice. There are 20 
connections in the Schwandbach bridge as shown in Figure 4. A finite element model of the bridge is created. 
Connections are modeled as rotational springs. To simulate sensor measurements, stiffness values are specified for 
all connections. This set of stiffness values is the correct model for the structure that should be found using system 
identification. A truck load test is simulated by modeling equivalent loads on the bridge model. Three load cases that 
represent two trucks at three different positions on the bridge are simulated (see Figure 5). Each truck has a front 
axle and rear axle loads of 17 kN and 44 kN respectively. 
 

 
 

Figure 4. Modeling assumptions for the Schwandbach Bridge (1933). 
 



 
 

Figure 5. Truck positions on Schwanbach bridge for the three load cases.  
 

The starting measurement system consists of inclinometers at the following locations – 1, 3, 6, 8, 10, 14 and 17. The 
inclinometers have a precision of 1 microradian. The rotations at the following locations for the three load cases are 
taken as the measurements from the inclinometers. These measurements are given as input to the model generation 
module. The spring stiffness values ki of connection i are permitted to vary between 0 (hinged) and 108 (fully rigid). 
The model parameters are log ki - the logarithms of the spring stiffness ki. 1000 candidate models are generated 
using the model generation module for the data mining module.  
 
 
RESULTS 
 
This section focuses on the use of clustering results to iteratively add sensors on the structure. As stated previously, 
a score function is used to evaluate the number of clusters among models. The present model set contains 1000 rows 
(the models) and 20 columns (the parameter values for each model). Using the score function [18], the model sets 
are found to contain three clusters. This number can be visually estimated as well. For that, the models are plotted 
using the two first principal components as axes in Figure 6. 
 
The three clusters present in Figure 6 already give the engineer an idea about the candidate model space. Since 
models in a cluster have similar values for parameters, they must also represent similar states of the structure. 
Instead of having to examine 1000 models, the engineer can examine the three groups of models, each represented 
by its center. The center of each cluster represents a bridge with a particular set of stiffness values for the 
connections. One cluster has a low value of stiffness for three connections. This may indicate cracking at these 
locations.  



 
 

Figure 6. Model space after placing the seven original sensors. Three clusters are present. Axes are the two first 
principal components. 

 
The next step is to iteratively add sensors to reduce the total number of models. The methodology is described by the 
flowchart in Figure 2. Representative models are selected in each cluster. Entropy is measured on these 
representative models and a new sensor is chosen where entropy is greatest. Once this sensor is known, a new 
measurement is taken. All models whose predictions do not match the new measurement are eliminated. This is 
repeated until the entropy of predictions is less than 1. At each iteration, the number of models is either reduced or 
the same. 
 
The proposed strategy is compared with a strategy without clustering. Results using the proposed strategy are found 
to be better. Figure 7 shows a comparison of the two strategies on the basis of number of models remaining after 
each iterative measurement. The remaining number of candidate models is plotted versus the iteration number (i.e. 
the number of sensors placed). The starting conditions include seven sensors. Using the clustering strategy, the 
number of models decreases more rapidly. The reason for this behavior is that the strategy involving clustering finds 
better measurement locations. As seen from Figure 7, measurement from the location identified using clustering in 
the first cycle is able to filter as many models as the measurements from locations identified over two cycles using 
the strategy without clustering.  
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Figure 7. Comparison of the number of models left after sensor addition for methodologies with and without 

clustering. 
 

After two sensor additions, the clustering strategy stabilizes. Addition of further sensors does not reduce the number 
of remaining models. The reason for such behavior is that entropy values of predictions at all measurement locations 
are low. Placing sensors at the given measurement locations cannot filter more models. However, there are multiple 
clusters present among the remaining models. This indicates that the correct model has still not been identified. The 
engineer has to choose new measurement locations and possibly, new sensor types to identify the correct model. 
 
 
CONCLUSIONS 
 
Conclusions from this study are the following. 

1. Clustering is capable of organizing large numbers of candidate models generated by stochastic search 
into small numbers of clusters and thus, engineers may concentrate only on a smaller set of 
representative models from each cluster. 

2. The information from clustering helps identify subsequent sensor placement locations that eliminate 
the highest number of models from the current set. 

 
Several extensions to this work are in progress. Application of other clustering algorithms and especially fuzzy 
clustering is under study. Use of a different stopping criterion for the methodology is also being explored. Lastly, 
work is in progress for devising a standard way of estimating the number of representative models required from 
each cluster to identify subsequent measurement locations. 
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