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Abstract 
 
A damage locating algorithm with no requirement for a detailed analytical structural model has been proposed in our 
previous research, named as modal macro-strain vector (MMSV) method, by directly using the modal parameters 
extracted from dynamic macro-strain data recorded by long-gage fiber optic sensors array distributed throughout the 
full or some partial areas of beam-like structures. Although this method has been verified to be effective by 
numerical simulations with different levels of measurements, noise and simple experiments under single-point 
excitation, the influence of the uncertainty from measuring errors and environmental disturbance is expected to be 
reduced to ensure it can work in more complex engineering practice. This paper proposes a method for extracting 
features of MMSV based on the statistical correlations among the distributed macro-strain measurements. 
Experimental investigations are carried out to verify the effectiveness of the extracted statistical features, based on 
which the originally proposed MMSV method is extended for damage quantification. Numerical case studies are 
finally performed to investigate the suitability and universality of the model-independent method for damage 
identification.    
 
 
INTRODUCTION 
 
Most vibration-based damage identification strategies developed to date are based on the dynamic responses from 
accelerometers, velocimeters or displacement transducers. Although large quantities of algorithms have been 
explored to make the most of these dynamic measurements, many challenges are still in the way of performing an 
effective strategy for both locating and quantifying damages in large-scale civil structures. On the one hand, damage 
location is usually implemented by employing model-independent methods that need not require a detailed 
analytical structural model and can work by directly utilizing features extracted from recorded data. However, 
frequency holding high measuring precision is too “global” to locate local damage; whereas mode shape and its 
derivatives, such as curvature mode shape, which are sensitive to damage, are difficult to acquire with enough 
precision. On the other hand, damage quantifying largely relies on a structural model such as the FE model, and is 
performed via an optimization-iterative or inverse analysis based on model updating. However, for large-scale 
structures, model updating requires tremendous work quantification and the effectiveness and reliability of the 
updated results is difficult to evaluate.  
 



Regarding the state of art on the considerable research works for civil structural health monitoring (SHM), the 
concept of distributed strain sensing techniques has been employed in our efforts to develop an integrated SHM 
strategy for civil engineering [1]. As a typical local measurement, strain has been verified to be very sensitive to 
damage. However, for large-scale civil SHM, strain measurement always serves an auxiliary role, partly due to its 
locality that the influence of damage on strain measurement cannot be reflected effectively unless the area where the 
strain sensor is fixed covers the damaged region. Therefore, to detect arbitrary and unforeseen damage in a 
complicated structure, strain sensors have to be installed in a distributed way. 
 
As one of the essential components in this proposed strategy, an algorithm with no requirement for a detailed 
analytical model is presented for locating damage in flexural structures by directly using dynamic responses from 
distributed strain sensors [2], named as modal macro-strain vector (MMSV) method. Although this method has been 
verified to be effective by numerical simulations with different levels of measurements, noise, and simple 
experiments under single-point excitation, the influence of the uncertainty from measuring errors and environmental 
disturbance is expected to be reduced to ensure it can work in more complex engineering practice. This paper 
proposes a method for extracting features of MMSV based on the statistical correlations among the distributed 
macro-strain measurements. Experimental investigations are carried out to verify the effectiveness of the extracted 
statistical features, based on which the originally proposed MMSV method is extended for damage quantification. 
Numerical case studies are finally performed to investigate the suitability and universality of the model-independent 
method for damage identification. 

 
 
DISTRIBUTED SENSING TECHNIQUES 
 
In contrast to the multi-point sensing techniques, distributed sensors are supposed to cover the overall structure. 
Take a beam for instance. Multi-point sensing means that sensors are placed in multiple special positions of the 
structure (e.g. at the mid-span and quarter-spans of the beam) where responses are measured. Distributed 
measurements, on the other hand, are ideally expected to obtain data at any point over the length of the beam.  

 
 
 
 
 

 
 

 
Fiber optic sensing techniques have been under rapid development in recent years and present a promising tool for 
this kind of distributed strain measurements. Regarding the on-going development of available fiber optic sensing 
techniques, fiber Bragg grating (FBG) sensors have better precision and measuring stability, and are currently more 
suitable for structural damage detection. Thus, in our recent research [3], a novel distributed long-gage FBG strain 
sensing system for practical adaptation to civil structural health monitoring has been developed (see Fig.1), which is 
expected to implement both static and dynamic measurements for strain distribution. It should be noted that this 
sensor array is also included in our definition for distributed sensing, which may fail to obtain the measurement at 
each point inside a sensor, but can yield the average response over the sensor gauge length. 

 
 
EXPERIMENTAL INVESTIGATIONS 
 
To emphasize the essential concept of the model-independent damage identification scheme, a typical elastic steel 
beam is first chosen as a simple illustration for experimental investigations. 

 
Experimental Program 
A simple beam with 0.96m length, 50mm width, and 3mm height is used as a beam specimen. To contrast the FE 
model, the beam is artificially shown in Fig.2 with 16 elements, 17 nodes (1 to 17 from left to right) and 32 DOFs. 
The set single damage at element 6 and double damages at elements 6, 10 with the width reduction from 50mm to 
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Figure 1. Distributed long-gage FBG sensor. 



24 mm are introduced to the beam for damage identification. The geometrical sizes and material properties of the 
beams can be found in Fig.2. The intact beam and those with different damage scenarios are respectively denoted as 
[C1, C2, C3]. Distributed sensors with four long-gage FBG sensors array of 24cm gauge length are considered. Four 
traditional foil strain gauges of 5mm gauge length are installed for comparison. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
EXPERIMENTAL MEASUREMENTS 
 
Dynamic measurements in time domain 
Dynamic tests are performed 15 times for each beam with the single-point impulsive hammer excitation applied at 
each free node with arbitrary amplitude. Fig.3 illustrates one case of the macro-strain time-series data for the intact 
and damaged beams. It can be seen graphically from the relative amplitude of strain time-history curves recorded by 
different FBG sensors that the damaged parts (C2F2, C3F2, C3F3) are relatively magnified. 

 
 

 
 
 
 
 
 
 
 
 

 
Dynamic measurements in frequency domain 
Via fast Fourier transform (FFT), the strain frequency response function (FRF) can be obtained by  
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where ( ) ( )ωεε ,t  are the strain response in terms of time and frequency, ( ) ( )ωptp ,  are the single-point excitation in 
terms of time and frequency, F is the arithmetic operator for FFT. The magnitude of strain FRF from FBG sensors in 
a case for C2 is shown as an example in Fig.4 (1), where three obvious peaks can be found for the indications to the 
first three modes. Taking the first mode for consideration, the frequency spectrums under one excitation case for C1, 
C2 and C3 are illustrated in Fig.4 (2)-(4). Apparently with the increase of damage extent, the natural frequency and 
damping ratio reduce. What is more important is that in contrast with the relative value of the peaks from F1~F4 in 
C1, those from F2 in C2 and from F2, F3 in C3, are relatively larger and potentially offer a reference for damage 
locating and quantifying.  

Figure 2. Experimental specimens and sensor 
placement. 
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Figure 3. Macro-strain time-series data in different.
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By assembling the magnitude of strain FRFs from various sensors, a vector named as modal macro-strain vector 
(MMSV) for the rth mode can be achieved as 
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The component mrδ  is correspondingly named as modal macro-strain (MMS). It should be noted that similar to 
mode shape, this vector ignores the amplitude and only emphasizes the relative ratio of all components.  
 
As FBG sensors and strain gauges employed the different sampling rates, their MMSVs in various cases are 
constructed respectively. Consider the first mode. The correlations denoted by discrete points between the MMSs 
from S2~S4 and all FBG sensors and those from S1 including all excitation cases with single-point impulsive load 
arbitrarily applied in each node, are assembled into Fig.5 (1)-(3). To compare the results of the intact and damaged 
beams, the correlations between the MMSs from F1~F4 and those from S1 in the cases of C1~C3 are depicted in 
Fig.5 (4). By fitting these recorded discrete points, perfect lines can be obtained. The slopes of the fit lines obtained 
by the FBG sensors fixed to the area involving the damages (C2F2, C3F2, C3F3) present evident difference from 
those from the intact beam (C1). This is valuable for vibration-based damage detection due to the fact the slope of 
the fit line may provide a more reliable index in view of statistical concept. 
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Figure 4. Frequency spectrum and extraction of modal 
parameters. 
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Data Processing and Interpretation 
Table 1 gives the correlation coefficients of MMS in various impulsive load cases for each beam. Clearly, perfect 
linear correlations have been achieved, which verifies the important conclusion that MMSV is a natural property of a 
structure, independent of external load, and only emphasizing the relation among the vector components, regardless 
of amplitude. Moreover, the fit line is a type of statistical result, helpful to reduce random errors by fitting the 
measurements from various load cases. 

 
Table 1: Correlation coefficients of MMS in various impulsive load cases.  

 
Cases F1 F2 F3 F4 

C1 0.9998576 0.9998832 0.9998547 0.9994244 
C2 0.9999617 0.9998853 0.9999289 0.9999289 
C3 0.999231 0.9991352 0.9989113 0.9992476 

 
 
What is most important, is the fact that the slopes of the fit lines are actually the components of the normalized 
MMSV as defined in Eq.(2) by taking the MMS from S1 for reference. The normalized statistical MMSVs (i.e. 
slopes of fit lines) for each beam are given in Table 2, where the highlighted characters in block emphasize the 
damaged parts.  

 
Table 2: Normalized statistical MMSV from experiments.  

 
Cases C1 C2 C3 

F1 0.5361 0.5058 0.4547 

F2 1.1940 1.5055 1.5039 

F3 1.1975 1.2232 1.5166 

F4 0.5048 0.5168 0.5017 

 
For the convenience of the later statement, suppose the normalized MMSV as 

{ }T
mrrr LL ,,,, 21 ψψψ               (3) 

A damage index vector can hence be defined by the relative error of the normalized MMSV from intact and 
damaged structures as 

{ }1 2, , , ,r r mrβ β βL L                  (4) 

with each component obtained by,  
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where the superscript “*” represents the damaged state. 
 
 
DAMAGE QUANTIFYING BASED ON NORMALIZED STATISTICAL MMSV 

 
It can be found from the above experimental investigations that the damage index based on the normalized statistical 
MMSV provides a nice indication to damage identification. In the following discussions, numerical case studies will 
be performed to investigate the relation of this index and damage extent. 

 



Damage Locating 
 
 
 
 
 
 
 

 
 
 
A steel beam of “I” cross section with rollers supported at two points is selected as an object structure. The finite 
element (FE) model with 40 elements and its detailed dimensions is illustrated in Fig.6. Ten long-gage strain sensors 
of 200mm gauge length are supposed to be installed onto the bottom surface of the beam in a distributed way, 
denoted by F1~F10. A sensor of 50mm gauge length shown as S1 is also fixed in parallel at the bottom surface of 
element 6, which plays the same role as the S1 strain gauge in the above experimental investigations to provide a 
basis on which the MMS from the distributed sensors can be normalized. In total, 12 cases, denoted as C1~C12, are 
designed for this study, named by case study 1(CS1). As shown in Table 3, damages are simulated as different levels 
of the reduction of elastic modulus in the area where F3 is installed (i.e. elements 9~12 in Fig.6). Since the purpose 
of damage identification is primarily supposed to detect small and medium damage, this work only investigates the 
damage below 50%. 

 
Table 3: Designed cases for CS1. 

 
Cases C1 C2 C3 C4 C5 C6 

Damage extent 0 1% 5% 10% 15% 20% 

E *(E+11) 2.1 2.08 2 1.89 1.79 1.68 

Cases C7 C8 C9 C10 C11 C12 

Damage extent 25% 30% 35% 40% 45% 50% 

E *(E+11) 1.58 1.47 1.37 1.26 1.16 1.05 

 
 
The normalized MMSVs for the first mode as well as the damage indexes in all cases are then calculated. It can be 
found from Fig.7 that damages can be easily located for the β from F3 obviously increase, whereas the β’s from the 
other FBG sensors change little. This feature is very important because in this way the stain sensor only responds to 
the damage appearing in its gauge length and its inertia to the damages in other locations, which helps to solve the 
problem facing to traditional transducers such as accelerometers or velocimeters that their responses in translational 
DOFs are global quantities of structures that are considered being insensitive and having no clear relationship to a 
specific local damage even near the transducers. 
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Damage Quantifying 
Aiming at F3 in all above-mentioned cases, a quantitative relation between damaged extent and β3 in Fig.7 can be 
achieved. To investigate the suitability and universality of such a relation, considering the same beam model and 
sensors placement as illustrated in Fig.6, case study 2 (CS2) is performed with the designed cases shown in Table 4. 
In the cases of single damage including D1~D9, damages are simulated as the reduction of elastic modulus in the 
area where F1 or F3~F10 is installed with different damage levels from those in C1~C12. The cases of multiple 
damages are then investigated including D10~D13 with the damaged elements and their respective damage extents 
in Table 4. It should be noted here that the terms “single” or “multiple” damages depends on the damage that occurs 
in the area in the charge of a single long-gage sensor or more sensors, rather than structural elements. 

 
Table 4: Designed cases for CS2. 

 
Single Damage 

Cases 
D1 D2 D3 D4 D5  

Damaged elements 1~4 9~12 13~16 17~20 21~24  
Damage extent C1~C12 (for each case) 

Single Damage 
Cases 

D6 D7 D8 D9   
Damaged elements 25~28 29~32 33~36 37~40   

Damage extent C1~C12 (for each case) 

Multiple Damages 
Cases 

D10 D11 D12 
Damaged elements 9~12 21~24 9~12 21~24 9~12 21~24 25~28 

Damage extent C1~C12 C4 C2~C12 C5 C3 C2~C12 

Multiple Damages 
Cases 

D13  

Damaged elements 9~12 21~24 25~28 33~36    

Damage extent C7 C2 C6 C2~C12    

 
Focus on the sensors which are installed in the region involving damages such as F3 in Fig.7. For each sensor in the 
case of a given damage extent, one point representative of the relation of damage extent vs. β can be plotted. 
Assembling all the points obtained from the above-mentioned cases (totally 99 points for the cases of single damage 
and 121 points for multiple damages), it can be seen in Fig.8 that a perfect quadratic curve is obtained. Via 
polynomial fit, this curve can be expressed as: 

458.160374x.0x0271.0)( 2 ++=xy            (6) 

with x for damage extent (%) and y for the damage index β (%). So far the fit polynomial Eq.(6) is finally 
established for damage quantifying.   
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Figure 8. Damage index vs. damage extent in CS2.



Damage in a Certain Location inside the Sensor Gauge Length  
 
 
 
 

 
 

 
 

Since damage is a local phenomenon, a long-gage sensor definitely covers a certain length along a structure, hence 
in many cases, damage is sure to appear somewhere inside the sensor gauge length. Suppose that the beam model in 
Fig.6 incurs a single damage at element i (see Fig.9). Consider a long-gage sensor, denoted FF with the gauge length 
over n elements including element i. Based on the above description, the damage index concerning the damaged 
element can be calculated from Eq.(6), i.e. 

)(xyi =β                          (7) 

whereas those concerning the remaining intact elements hold 
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Thus the relative error of MMS concerning FF should be  
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The relation of βFF vs. damage extent of element i concerning different n’s is shown in Fig.10. This figure provides 
very important information that if β from a long-gauge sensor is known, the damage extent can be evaluated by 
giving in-advance estimation on what percentage of the gauge length of the sensor the damage is localized on. For 
example, if β is 10%, the damage extent is supposed to be 10% based on the assumption that the damage is evenly 
distributed over the whole gauge length of the sensor, or to be 18% on that the damage does over half of the sensor 
gauge length, or to be 44% on that the damage is localized to 1/8 of the sensor gauge length. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Damage Identification Based on the Above Experiments 
It can be seen directly from the block characters in Table 2 that by comparing the MMSs from the sensors installed 
on the intact beam, those corresponding to the damaged location change considerably. Recalling Fig. 10, damage 
quantification can be performed as shown in Table 5. It is obvious that if the estimation on the localized extent of 
damage is approximate (n=4 here), the damage can be quantified with high precision. Otherwise (i.g.n=1), the 
damage extent may also be given in an average concept. 
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Figure 9. Beam model and sensors placement.
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Table 5: Damage quantification based on experiments.  
 

C1 C2 

Damage extent Sensor 
MMSV MMSV β 

n=1 n=4 set 

F1 0.5361 0.5058 -5.65% 0 0 0 
F2 1.194 1.5055 26.09% 21.0% 51.5% 52% 
F3 1.1975 1.2232 2.15% 1.0% 8.5% 0 
F4 0.5048 0.5168 2.38% 1.5% 9.8% 0 

C1 C3 

Damage extent Sensor 
MMSV MMSV β 

n=1 n=4 set 

F1 0.5361 0.4547 -15.2% 0 0 0 
F2 1.194 1.5039 25.95% 20.9% 51.3% 52% 
F3 1.1975 1.5166 26.65% 21.3% 52.1% 52% 
F4 0.5048 0.5017 -0.61% 0 0 0 

 
 
CONCLUSIONS 
 
In this paper, a model-independent method for damage locating and quantifying is proposed based on the statistical 
correlation of modal parameters among the measurements from distributed fiber optic sensors. Some important 
conclusions are summarized as follows: 
 
(1) On the basis of dynamic long-gage strain distribution, a normalized MMSV can be constructed by taking the 

MMS from a given sensor for reference. A damage index vector is defined as the relative error of the 
normalized MMSV from intact and damaged structures. 

(2) A polynomial equation representative of the relation of the damage index vs. damage extent is put forward for 
damage quantifying by fitting the results from numerical case studies. The method for quantifying the damage 
in a certain location inside the sensor gauge length is presented. 

(3) In view of practical applications, the normalized MMSV can be directly constructed by statistically processing 
the measurements under different load conditions. Experimental investigations on steel beams have verified that 
based on such normalized MMSV, the presented damage index is effective and accurate to locate and quantify 
the set damage. 
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