
1 INTRODUCTION 

Creep and shrinkage are natural properties of 
concrete which lead to time-dependent redistribution 
of stresses between concrete and steel in section in 
prestressed concrete bridges, thus to time-dependent 
deflections. In hyperstatic continuous girder bridges, 
redistribution of structural force occurrs 
simultaneously which also produces time-dependent 
deflections. In the past years the mechanics property 
of concrete is improved tremendously due to 
adopting newly developed materials as concrete 
components and renewing mixture design, and the 
strength of reinforced materials such as steel and 
carbon fiber increases too, all of which make possible 
to construct larger span with smaller height, in which 
how to predict precisely and control assuringly the 
long-run deflection becomes one of the most 
important key techniques for needed innovative 
structural design. The precision in predicting time-
dependent effect in prestressed concrete bridges lies 
mainly in four aspects, precise model to describe 
properties of creep and shrinkage, precise structural 
analysis without considering creep and shrinkage, 
precise time-dependent structural analysis and 
reasonable construction. 

Theories on mechanism of creep and shrinkage 
(Bažant et al. 1979,1989,1995, Cervera et al. 1999, 
Wittmann 1982) have been put forward, but even the 
most precise model B3 still holds large scale of 
uncertainty factor, as Bazant(1995) pointed out that 
B3 has to be considered uncertainty factors 23% for 
creep and 34% for shrinkage in design respectively, 
for too many varying aspects contributes to creep 
and shrinkage. For specific deflection-controlled 
structure, to some extent, B3 is not enough, so 
engineers turn to obtain properties of creep and 
shrinkage of plain concrete adopted in real structure 
by testing specimens in laboratory. As researches 
show, in some cases, the deduced characteristics of 
creep and shrinkage from indoors experimental 
results may not fit well with real values in working 
ambient environment. Thus, we face the problem 
how to derive authentic expressions for creep and 
shrinkage, the base to predict precisely and control 
time-dependent deflection of structure. 

In most cases, the result of structural analysis 
without considering creep and shrinkage is reliable if 
the adopted parameters are reasonable, while the 
precision of time-dependent structural analysis is 
more difficult to guarantee. Numerous approaches on 
time-dependent structural analysis have been 
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developed, which can be categoried into two groups, 
one is step-up approach based on finite element 
method (Bažant 1972, Bradford et al.1999, 
Buragohain et al.1997, Hu & Chen 2004), the other 
is simplified approach based on steel restraint 
coefficient method (Bandyopadhyay &Sengupta 
1999, Branson 977,Gilbert 1999, Hu et al. 2004), 
and the former is always preferred for precise 
analysis. Nowadays the commonly used step-up 
approach treats the effect due to creep and shrinkage 
obtained from last step as initial strain in up-date 
equations, in which creep and shrinkage effect cant 
not be separated from unified equations, this will lead 
to be difficult to ascertain the fault or unacceptable 
discrepancy coming whether from elastic analysis or 
from time-dependent analysis, for the parameters 
such as concrete modulus and existed stress in 
tendons used in elastic analysis are time-dependent 
variables. Hu & Chen (2004) established 
automatically step-up method (ASUM), in which the 
control of calculating precision is fulfilled through 
precision control of finite element method(FEM) for 
elastic analysis and ASUM for time-dependent 
analysis, respectively. ASUM bears the capacity to 
achieve anticipated precision that can be used in 
intelligent system. 

Construction also has serious impact on long-run 
deflection control, for creep behavior is affected by 
loading age and load duration relative to the time of 
tensioning individual steel group, the time the first-
term dead load (self weight) begins to function and 
the time to apply second-term dead load (deck 
system and handrail). The most important is that the 
properties of creep and shrinkage vary with concrete 
components and curing condition, all of which 
correspond to construction in site. To some extent, 
uncertainty in construction is inevitable and it’s 
difficult to estimate in structural analysis. 

As discussion above, we face the problems in 
long-term deflection control, how to derive authentic 
expressions of creep and shrinkage of plain concrete 
adopted in real structure working in site, how to 
guarantee the precision of time-dependent structural 
analysis and how to consider the uncertainty effect of 
construction. On one hand, they are difficult to deal 
with; on the other hand, we still face how to adjust 
deflection if it surpasses the limited value occurring 
possibly even though above problems are disposed 
theoretically. In this paper, the main purpose is to 
present concept of an intelligent system on 
controlling long-run deflection for prestressed 
concrete bridges, and to discuss the structure and key 
techniques.  

2 STRUCTURE OF INTELLIGENT CONTROL 
ON LONG-RUN DEFLECTION 

The model of intelligent control on long-run 
deflection includes five sub-models, data collection, 
deduction of authentic expressions of creep and 
shrinkage of plain concrete, time-dependent 
structural analysis, solution of the needed force to 
adjust surplus deflection, and applying force. The 
structure of intelligent system can be described in 
Figure 1.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic diagram of structure of intelligent 
control on long-run deflection 

 
 
Data collection system accumulates data on time-

dependent deflection of structure and strain of 
concrete. At least six observation points are needed 
along a span to observe the deflection, which two 
points are located at mid-span and two points at each 
end of span, these two points are parted at two sides 
of the girder in the symmetric location at the same 
section. At least ten strain sensors are needed to 
observe the strain of concrete at five sections located 
at two end of span, mid-span, one-fourth span and 
three-fourth span. Two sensors at a section, one is 
located near the top fiber while the other near the 
bottom fiber. A temperature sensor is needed near 
each strain sensor to delete the effect of temperature 
from observed data.  
  There are relationship between observed total 
strains and strains due to creep and shrinkage in real 
structure in site, so the followed model is to deduce 
authentic expressions of creep and shrinkage of plain 
concrete from results of short-term observation (Hu 
& Chen,2003).The deduced expressions are 
fundamental for precision-controllable time-
dependent structural analysis to predict long-run 
deflection. Even the analysis model bears the 
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capacity to adjust computational precision by further 
dividing time interval, the theoretical values with 
large discrepancy from observed data still possibly 
occur for too many factors affecting structure’s time-
dependent behavior beyond control and pre-
ponderation, so the analysis model has to amend it’s 
computing parameters to make theoretical values fit 
well with observed data. If the predicted long-run 
deflection based on revised analysis model surpasses 
the limitation, the needed force to adjust surplus 
deflection should be solved, which is the function of 
fourth model. The last model is to apply solved force 
on structure. 

3 MODEL FOR DEDUCTION OF AUTHENTIC 
EXPRESSIONS OF SHRINKAGE AND CREEP 

3.1 Authentic expression of shrinkage 
Creep and shrinkage function simultaneously in 
structures, and shrinkage is a behavior without load, 
so the authentic expression of shrinkage can be 
derived firstly when the structure is in load-free 
condition (Hu & Chen 2003). A concrete beam 
always stands over the formwork before bearing load 
after casting, and the effect of shrinkage and 
temperature is not enough to product camber, 
therefore only the longitudinal deformation due to 
shrinkage and temperature occurs (transverse 
deformation can be neglected) 
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Solution of compatibility and equilibrium gives  
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where ),(, τε tcsh = shrinkage strain of plain concrete. 
Setting the discrepancy sξ  of shrinkage between 

experimental result and theoretical value given by 
CEB-FIP Model Code 1990, the shrinkage 
expression turns to  
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where ∞,shε = nominal shrinkage; ),( ss ttβ = developing 
function of shrinkage; st = the time for concrete to 
begin to shrinkage. 

Solution of Eq.1~ Eq.3 works out 
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Different sξ  obtained at different time t  due to 
observed ),( τε tc and theoretical data. Letting sξ  
the expected value of regression analysis, authentic 
expression of shrinkage can be derived as follow 

),(),( ,, ssshsscsh tttt βεξε ∞=                     (5) 

3.2 Authentic expression of creep 
For a static prestressed concrete bridge, strain 
increment of concrete in section relates to the creep 
of plain concrete, so the creep coefficient can be 
given as 
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where 0t = the time the stress is applied ; )( 0teε = 
instantaneous elastic strain of concrete ; e  = 
distance from centroid of total steel area to centroid 
of concrete; cpp AA /=µ ; r = radius of gyration of 

concrete section;
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centroid of total steel to centroid of 
concrete; ),( 0ttχ = aging coefficient of 
concrete; ),( 0ttrσ = intrinsic relaxation of the 
prestress  steel; rλ = reduced coefficient of intrinsic 
relaxation considering the effect of creep and 
shrinkage. The scope of ),( 0ttχ  varies from 0.6 to 
0.9, 0.82 is commonly preferred, or can be calculated 
by equations (Lacidogna & Tarantino 1996). 

),( 0ttrσ  and rλ can be calculated by equations 
(Ghali &Trevino 1985). 

In Eq.6, ),( 0ttε∆ and )( 0teε can be read from 
sensors, ),( 0, ttcshε  is provided by Eq.5. Setting the 
discrepancy crξ  of creep between experimental 
result and theoretical value given by CEB-FIP Model 



Code 1990, the expression of creep coefficient turns 
to 

),(),(),( 000 ttttt ccr βϕξϕ ⋅∞=                   (7) 
where ),( 0t∞ϕ = nominal creep; ),( 0ttcβ = developing 
function of creep. 

Thus we can obtain authentic expression of creep 
coefficient as follows 
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where crξ is the expected value of regression 
analysis. 

4 MODEL FOR PRECISION-CONTROLLABLE 
TIME-DEPENDENT STRUCTURAL 
ANALYSIS 

This model covers three functions, predicting time-
dependent deformation (deflections and strains) of 
prestressed concrete bridge adopting derived 
authentic expressions of creep coefficient and 
shrinkage, adjusting computational model by 
comparing tested data and theoretical values, and 
predicting long-run deflection caused by applied 
force for compensating surplus deflection based on 
revised time-dependent structural analysis model.  
  Here to introduce briefly the precision-controllable 
time-dependent structural analysis based on 
automatically step-up method (ASUM) and finite 
element method (FEM), which includes four steps: 
  Step1—Compute instantaneous elastic responses 
of bridge at loading age 0t  by FEM, in which the 
built-up beam element composed of concrete, 
prestressed steel and non-prestressed steel is 
adopted, and the equivalent stiffness considers 
contribution of concrete, prestressed steel and non-
prestressed steel, including the effect of time-
dependent modulus of concrete and incessantly 
tensioning steels. The equivalent stiffness at time 0t  
is  
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where the subscripts“b”、“c”、“s”、“p”
represent compound element, concrete element, 
prestressed steel element and non-prestressed steel 
element. 

The elastic response includes )( 0t
e
cε , )( 0t

e
cσ , 

curvature )( 0t
eφ  and deflection )( 0tf e at any element 

nods，where the stress and strain are the values at 
the centroid of concrete. 

Step2—Use ASUM to compute the hypothetical 
strain increment cε∆  and curvature increment φ∆  
due to creep and shrinkage in the period 

tt →0 under constant force eN0 、
eM 0  without 

restraint. 
The artificial stress needed to prevent occurrence 

of cε∆  is given as 

ccc tE εσ ∆−=∆ )(                             (11) 
Step3— Compute the elastic response cε∆∆ , 

cσ∆∆ , φ∆∆  and f∆∆ caused by artificial stress at 
every element nods by FEM, in which the stiffness is 
given by Eq.10.  

Step4—Calculate the total response including 
elastic value and time-dependent variation at time t , 
which is given as 
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In above computation the FEM is only used to 
calculate elastic responses which the time-related 
influences are not considered, while the ASUM is 
only used to calculate time-dependent effect due to 
creep and shrinkage for structures under free-
constraint, thus the control of calculating precision is 
fulfilled through precision control of FEM and 
ASUM, respectively.  

5 MODEL FOR SOLUTION OF NEEDED 
FORCE TO ADJUST DEFLECTION 

In real bridges it’s possible to occur that the tested 
real deflection surpasses the predicted time-
dependent value resulting in long-run deflection over 
the limited value, in this case we have to adjust the 
internal force to delete or compensate the surplus. 
For any structures the mid-span deflection can be 
calculated through curvatures at different sections, so 
adjusting deflection can be achieved by adjusting 
curvatures.  Assuming the needed force kN , kM at a 
specific section at time kt  can generate long-run 
curvature ∞φ , setting elastic strain )( kc tε at reference 
point O (centroid of concrete) and elastic sectional 
curvature )( ktφ  caused by kN , kM , thus we have
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Which can be rewritten as  
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number of layers of non-prestressed steel; np = the 
total number of bundles of prestressed steel; µ = 
steel ratio; piθ  is the acute angle between tangent 
line of prestressed steel and beam axis. 

The relationship between strain and stress of 
concrete considering creep and shrinkage is given as 
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Dividing duration ),( 0 tt into small time interval
（ 1−it ， it ）（ ni ,...2,1= ），assuming the stresses 
of concrete vary linearly during（ 1−it ， it ），
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Above equation can be written as following form  
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deformation compatibility, the stress of concrete at 
any point is provided by 
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which can be rewritten as 
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Substitution of Eq.17 into Eq.24, considering 
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)(ye = distance from centroid of concrete to acting 
point of kN . 

In Eq.25, )(ye and kN  are unknown variables 
needed to solve. How to determine )(ye and kN lies 
in the characteristics of system to applying force on 
structure. For instance, provided the eccentric 
distance )(ye is set, the needed force kN to generate 
long-run curvature )( nφφ =∞  at time kt  can be 
calculate by 
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6 DISCUSSION ON SYSTEM OF APPLYING 
FORCE 

Several kinds of systems on applying force can be 
used to adjust deflection, Figure 2 illustrates the 
typical intelligent prestressed steel located outside of 
beam after applying force in a simply supported 
prestressed concrete bridge. Line AB represents the 
centroid of concrete in section along the span, ADB 
represents the up-dating profile of prestressed steel 
after applying extra force, in which two approaches 
can achieve this condition: one is that the original 
profile of prestressed steel is ACB, ADB results from 
activating upward force in point C; the other is that 
the original profile of prestressed steel is ADB, the 
extra force apply s on point A or B along direction 
DA or DB, in which one end of steel A or B is fixed. 
So two different systems of applying force can be 
adopted to fulfill this same purpose. The following is 
only to discuss on determining the applied 
force kN and eccentric distance 
 
 

Figure 2. Schematic diagram of typical system for applying 
force  

)(ye  based on first approach in Figure 2. 
  If the long-run curvature needed to be adjusted is 

∞φ , then horizontal component of ADN  is equal to 
kN , solution of equations of force equilibrium gives 
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where L  = length of span. 
If point C is not in the controid of concrete, 

existing eccentric distance 0e  above the controid, 
assume the existed pre-tension in steel ACB 
stretched initially at time τ  is 0N  at time kt , we 
have 
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From Eq.26 and Eq.27 or Eq.28 we obtain   
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where ia  = coefficient relative to ),( τσ kr t  
determined by 0N .  

Therefore the applied upward force is given by 

L
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Actually, there are three variables in Eq.30, 
0N , kN and )(ye , in which the results of kN and 

)(ye  are affected by 0N  and the value of 0N , to 
some extent, plays a decisive role in workability of 
system of applying force for the maximum of force 
and displacement provided by system is limited, thus 
the value of 0N  should be in a reasonable range.  

If the bridges given in Figure 2 is a hyperstatic 
system, the needed forces along span to adjust 
deflection can be derived on a set of equations 
considering the optimum design, in which the 
calculation is more complicate than discussed above. 

7 EXAMPLE 

Hu & Chen (2003) have fulfilled a 630-day time-
dependent experiment on behavior of simply 
supported T-section prestressed concrete bridge with 
6 meters long. The initial time to stretching steel is 
10 days after curing concrete and the self-weight of 
beam begins to act and first extra load 7.7 KN/M is 
applied simultaneously, two months later second 
extra load 9.33 KN/M is applied over beam. The 
experimental results is given in Figure 3. To illustrate 
theoretically the feasibility of intelligent system on 
long-run deflection control presented in this paper 
the applied extra load is replaced equivalently by 
tendons (thick reinforcement bars).  

The deduced formulae on creep and shrinkage 
based on MC90 from short-term observation are 

),(),(919.0),( 000 ttttt cβϕϕ ∞=                 (31) 
),(023.1),( ,, ssshscsh tttt βεε ∞=                  (32) 

  The firstly added load can be replaced by tendon 
with initial prestress 300 MPa and eccentric distance 

cme 3.50 =  above centroid of concrete. The diameter 
of tendon is 40mm and the standard strength is 540 
MPa. The theoretical values based on replaced 
tendon before adjusting is showed in Figure 3. To 
keep the long-run deflection derived from adjusted 
system almost the same as original system, the 
needed KNNk 5.330=  calculated by Eq.29 should 
be applied and the relative forced upward 
displacement of tendon is 6.4cm ( cmye 7.11)( = ).  
Figure 3 compares the experimental results and 
theoretical values based on adjusted system. 
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Figure 3. Comparison of deflections between experimental 
results and theoretical values at midspan 
 

Figure 3 shows that the theoretical deflections 
based on adjusted system fit well with experimental 
results in original system during load duration, which 
means the deflection-adjustable system through 
adjusting the location of intelligent tendon is feasible 
and theoretical value will achieve the predicted value. 
Therefore, the presented intelligent system on long-
run deflection control is practical theoretically. 

8 CONCLUSIONS 

This paper discusses mainly on the concept and 
structure of intelligent system on long-run deflection 
control for prestressed concrete bridges, and 
introduces the functions of sub-models and their key 
techniques. Numerous novel ideas are put forward 
and sets of equations on time-dependent structural 
analysis are established considering the effect of 
creep, shrinkage, sectional characteristics of 
concrete, steel, relaxation of steel and time-
dependent modulus of concrete. An example is 
introduced to illustrate the feasibility of the intelligent 
system, showing the system practical theoretically. 
  Because of the complicity of the intelligent system 
many key techniques, such as the detailed system for 
applying force or the mechanics system to make 
tendons displace and theories on optimum design for 
applied forces in hyperstatic structure, left to be 
resolved are not discussed in this paper, much work 
need to do to make intelligent system on long-run 
deflection control for prestressed concrete bridges 
real.  

REFERENCES 

ACI Committee 209. 1992. Prediction of Creep,Shrinkage,and 
Temperature Effects in Concrete Structures (209R-92). 
America Concrete Institute. Michigan:Farmington Hills 

Bandyopadhyay,T.K.&Sengupta,B.1999. Effect of deferred 
initial loading and percentage of steel on time-dependent 
losses and deformations of prestressed members. ACI 
Structural Journa 96(5): 807-816 

Bažant,Z.P.1972.Prediction of concrete creep effects using age-
adjusted effective modulus method. ACI proceedings 

69(4):212-217 
Bažant,Z.P.1979.Thermodynamics of solidifying or melting 

viscoelastic material. ASCE,Journal of Engineering 
Mechanics, 105: 933~952 

Bažant,Z.P. & Prasannan,S. 1989. Solidification theory for 
concrete creep I.Formulation, II.Verification and application. 
ASCE, Journal of Engineering Mechanics 115: 1691~1725 

Bažant,Z.P.&Murphy,W.P.1995.Creep and shrinkage 
prediction model for analysis and design of concrete 
structures-model B3. Materials and Structures 28(1): 357-
365 

Bradford, M.A. Gilbert,R.I.&Sun,S.C.H.1999.Time-dependent 
analysis of reinforced concrete structures using the layered 
finite element method. Structural Engineering and 
Mechanics 8(6): 561-578 

Branson,D.E.1977. Deformation of Concret Structures. New 
York: McGraw Hill Book Company  

Buragohain,D.N.& Sisshaye,V.R.1997.Finit element analysis 
of prestressed concrete box bridges. Journal of 
Structural Engineering 24(3):135-141 

CEB-FIP Model Code for Concrete Structures 1990. Comité 
Euro-International du Béton/ Fédération International de 
la Préconstrainte. Paris. 

Cervera,M.Oliver,J.&Prato,T.1999.Thermo-Chemo-
Mechanical Model for Concete. II: Damage and Creep. ASCE, 
Journal of Engineering Mechanics125( 9): 1028-1039 
Ghali, A.&Azarnejad,A. 1999.Deflection prediction of 

members of any concrete strength. ACI Structural Journ 
l96(5): 807-816 

Ghali,A.&Trevino,J. 1985.Relaxation of steel in prestressed 
concrete.PCI Journal (Sept.-Oct.): 82-94 

Gilbert,R.I.1999.Deflection calculation for reinforced concrete 
structures-Why we sometimes get wrong. ACI Structural 
Journal96(6):1027-1032 

Hu,D.&Chen,Z.Q.2003. Experimental research on shrinkage 
& creep and deflection in prestressed concrete 
bridges.Chinese Civil Engineering Journal 236(8):79-85 

Hu,D.&Chen,Z.Q.2003. Prediction of long-term effect of creep 
and shrinkage on newly-built prestrssed concrete bridges 
based on short-term test results. China Railway Science 
24(3): 44-49 

Hu,D.&Chen,Z.Q.2004.Automatically step-up method for 
creep analysis of prestressed concrete bridges. Engineering 
Mechanics 21(5): 41-45,71 

Hu,D. Tian,M. & Chen,Z.Q.2004. The restraint influence 
coefficient method to analyze shrinkage and creep in 
prestressed concrete bridges. In D.T. Niu&J.P.Ru(eds), The 
8th Int. Symp. on Strut. Eng. for Young Experts, Xi’an, 23-24 
August 2004:208-213. Beijing: Science Press 

Lacidogna,G.&Tarantino,M.1996. Approximate expressions 
for the aging coefficient and the relaxation function in the 
viscoelastic analysis of concrete structures. Materials and 
Structures 29(2):131-140 

Teng,S. & Branson,D.E.1993.Initial and Time-dependent 
Deformation of Progressively Cracking Nonprestressed and 
Partially Prestressed Concrete Beams.ACI Structural 
Journal 90(5):480-488 

Wittmann, F.H. 1982. Creep and shrinkage mechanisms. In 
Z.P.Bažant & F.H. Wittmann(eds), Creep and shrinkage in 
concrete structures:129-161. Chichester:Wiley. 

 
 

0 100 200 300 400 500 600

0.0

0.5

1.0

1.5

 experimental results
 theoretical values

D
ef

le
ct

io
ns

 (m
m

)

Duration day （ ）


