
1 INTRODUCTION 
 
Structural health monitoring is concerned with the 
serviceability and safety of the structure. Especially 
for the case of building structures, serviceability of a 
building against lateral loads such as wind loads is 
evaluated in terms of two types of structural 
responses: lateral displacement and horizontal 
acceleration level. Excessive lateral displacement 
can cause structural problems as well as other 
diverse problems on non-structural elements such as 
damages to finishing materials, while excessive 
horizontal acceleration level can bring feelings of 
unpleasantness to building occupants. For these 
reasons various researches have been conducted on 
methods of measuring and controlling relative lateral 
displacements and horizontal acceleration of high-
rise buildings (Tamura et al., 2002; Park et al., 
2002). 

In the consideration of safety of building and 
infrastructures, the strength or stress levels of 
connections and connected members due to live 
load, earthquake, wind, or other unexpected loadings 
must be checked to not exceed the design strength 
levels specified in design specifications (AISC, 
2001). In allowable stress design of steel structures 
(AISC, 1989), if the maximum stress in a member 
reached the yield stress due to an unexpected 
overload, the member is considered to be analogous 
to failure. Although the steel will not fail at yield, 
excessively large deflections will deteriorate the 

serviceability of the structure. Therefore, to 
guarantee the safety of a structure and its users, the 
maximum stress in a member must be monitored. 

Various fiber optic sensing systems based on 
different sensing mechanisms have been developed 
to assess the safety of structural members (Leung, 
2001; Murukeshan et al., 2000). However, most 
existing fiber optic sensors used for health 
monitoring system can cover a relatively small range 
of structural members. Since the actual stress or 
strain distribution induced a continuous beam by 
varying amounts and types of loads is non-uniform, 
there are many difficulties in determining the 
maximum stress or strain in a beam with those point 
sensors. In this case, the reliability of evaluated 
safety depends on the number and location of point 
sensors. It is not also realistic to increase the number 
of sensors to overcome these drawbacks.  

Utilization of the long gauge fiber optic sensors 
in health monitoring system can overcome those 
drawbacks involved in point sensors (Glisic and 
Simon, 2000; Tennyson et al., 2001; Ansari, 2005). 
The long gage sensors measure the relative 
displacement between two points on the structure. 
The distance between the two points along the fiber 
optic cable defines the gage length. Since the 
deformation measured is the average value measured 
over the gage length, the strain variation or stress 
distribution of a beam can be considered by long 
gage sensors. However, the maximum strain in a 
beam can not be measured from long gage optic 
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sensors since the gage length is not localized. Park et 
al. (2005) presented simple mathematical models for 
determination of the maximum values of strains or 
stresses in single-span beams based on average 
strains measured by long gage optic sensors 

In this paper, mathematical models are presented 
for determination of the maximum strain of a 
continuous beam from average strains measured by 
long gage optic sensors. In defining the relation 
between average and maximum strains, various 
types of loading and boundary conditions for typical 
beams in building structures or infrastructures are 
considered.  

2 SENSING PRINCIPLES  
 
This sensor consists of a length of ordinary telecom 
optical fiber bonded to or embedded into the 
structure. As the structure deforms, either by 
expansion or contraction, the fiber elongates or 
contracts accordingly. This displacement is 
measured using the methodology shown in the 
schematic of Figure 1.  

This system works on the principle of low 
coherence interferometery using a short coherence 
length source. The light from the diode is split in 
two, travels two different path lengths and is then 
recombined at a photo detector. If the two paths are 
within approximately 10 microns of each other, the 
two recombined beams will start to interfere with 
each other. This interference pattern is monitored by 
the photo detector as the actuated mirror is moved 
through the region in which the two paths are 
approximately equal. The peak of the interference 
pattern occurs when the two light paths are exactly 
the same. The measurement obtained is the total 
displacement over the gauge length.  

Since the long gauge sensor is a flexible optical 
fiber and, it can be attached to or embedded into 
many different configurations, and because of little 
limitation on length it is suitable for a large scale 
structure. In addition, this sensor is independent on 
EMI and stable chemically, so it suit long-term 
structure monitoring. 

The system operates by scanning the attached 
sensor for an interference peak (maximum intensity 
of light), and recording the displacement. Any 
changes in the sensor’s length can be detected by the 
shift in the signal peak to a different displacement 
location which is detected by the instrument. 

 

 
Figure 1. Schematic of long gauge instrument 

3 MATHEMATICAL MODELS FOR BEAMS 

3.1 Average strain vs. maximum strain 
Beams are structural members that carry transverse 
loads applied at the right angles to the longitudinal 
axis of the member. The loads cause the beam to 
bend. For a linear elastic beam, the bending 
stress, xσ , as a function of the position of x  along 
the beam’s axis can be found from the flexural 
formula in Eq. (1).  
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where xM = bending moment due to loads; xZ  = 
elastic section modulus of a beam; xε = flexural 
strain; and E = the modulus of elasticity. 

After the bending moment analysis is complete, it 
is necessary to determine the position of x  on the 
beam where the maximum moment occurs. For the 
assessment of the safety of a beam, the maximum 
moment is then compared with the allowable stress 
of the beam based on design specifications. 

In general, the maximum value of stress and the 
position where the maximum occurs in a beam 
structure in service can not be calculated by analysis 
due to uncertainties structural parameters required in 
structural modeling and variations of the intensities 
of loads required in structural analysis. Therefore, 
with the various types of strain sensors, the 
maximum strain measured is used in evaluation of 
the maximum stress as in Eq. (1). However, there 
are many difficulties in determining the maximum 
stress in a beam with point sensors since the actual 
stress distribution induced a beam by varying 
amounts and types of loads is non-uniform. In this 
case, the reliability of evaluated safety depends on 
the number and location of point sensors. It is not 
also realistic to increase the number of sensors to 
overcome these drawbacks.  

Average strain, .aveε , defined by the ratio of the 
relative displacement between two points of 1x  and 

2x  to the distance between the two points along the 
axis of a beam can be written as 
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where 2 1x xl −  = the distance between the two points 
1x  and 2x .  
If the strain measured is the average value 

measured over the region from 1x  to 2x  of a 
beam, the strain variation or stress distribution of a 
beam can be considered. However, the maximum 



strain within the region from 1x  to 2x  of a beam 
can not be measured from the average strain 
measured. It is necessary to develop the 
mathematical models for determination of the 
maximum strain of a beam from average strains 
measured by long gage optic sensors.  

3.2 Mathematical models 

Mathematical models are derived by defining the 
relation between the average strain measured from 
the long gage sensor and the maximum strain of two 
span beams. Two span beams subjected to two types 
loading conditions such as point and distributed 
loads with variable magnitudes are considered in 
this study.  
 

3.2.1 Continuous beams subjected to point loads 
As shown in Fig. 2, a continuous beam with spans of 
lengths 1l  and 2l  is subjected to a point load of 1P  
acting at the arbitrary distance a from the left-hand 
support on one span and a point load of 2P  acting 
at the arbitrary distance b from the left-hand support 
on the other span. The moment of inertias for the left 
and right spans are 1I  and 2I , respectively.  

 
 

 

 
 

Figure 2. Two span beam subjected to with different point 
loads and moments of inertia 

 
 

 
(a) Free-body diagram of the span A-B 

 

 
(b) Free-body diagram of the span B-C 

 
Figure 3. Free-body diagrams of the two span beam 

From the free-body diagram of the left span 
shown in Fig. 3(a), the longitudinal strain of the 
beam, 1( )xε , can be expressed as a function of the 
distance x from the left-hand support. 
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where 1Z = the elastic section modulus of the span 
and BM = the bending moment at the support B. 

The maximum strain in the beam having the 
concentrated load occurs at the point where the load 
is applied. The maximum strain of the left 
span, (1)maxε , is calculated by  
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If the length of the sensor is set to the distance a 
from the left-hand support to the point where the 
load is applied, then the average strain over the gage 
length, (1)aveε , can be given by 
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Thus, from the Eqs. (4) and (5), (1)maxε  can be 
expressed in term of (1)aveε  can be measured from 
the long gage sensor. 
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Eq. (5) defines the relationship between the 
average strain measured from the long gage sensor 
and the maximum strain of a beam.  

From the free-body diagram of the right span 
shown in Fig. 3(b), the longitudinal strain of the 
beam, 2 ( )xε , can be expressed as a function of the 
distance x from the right-hand support. 
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where 2Z = the elastic section modulus of the right 
span. 



As we did for the left span, the maximum strain 
of the right span, (2)maxε , is calculated by  
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If the length of the sensor is set to the distance 
2l b−  from the support C to the point where the 

load is applied, then the average strain over the gage 
length, (2)aveε , can be given by 
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Thus, from the Eqs. (8) and (9), (2)maxε  can be 
expressed in term of (2)aveε  can be measured from 
the long gage sensor. 
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Eq. (10) defines the relationship between the 
average strain measured from the long gage sensor 
and the maximum strain in the second span of the 
beam. In other words, for two-span continuous beam 
subjected to concentrated loads, the maximum strain 
in the each span is always two times the average 
strain from the long gage sensors regardless the 
location the concentrated load.  

For the assessment of the safety of the continuous 
beam, the negative maximum strain at the support B 
must be measured for comparison of the maximum 
strains (1)maxε  and (2)maxε . The negative maximum 
strain at the support b, ( )max bε  can be calculated 
from the average strains (1)aveε  and (2)aveε  without 
using another sensor at the top of the section of the 
beam at the support.  

The internal bending moment at the support B, 
BM , can be expresses as a function of the sectional 

properties and applied loads  

( )1 2BM XP YP= − +  

The parameters X and Y in Eq. (11) are given by 
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Then, ( )max Bε  may be expresses as a functions of 
the average strains and applied loads. 
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The unknown values of applied loads 1P  and 2P  
in Eqs (14) and (15) can also be estimated using the 
measured average strains (1)aveε  and (2)aveε . 
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The parameter K is given by 
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where 1 1 2 ( )D l l b Y= − ; 2
2 1( )D l b bY XY= − + − ; 

and 3 2 ( )D l ab aY bX= − − + . 
As mentioned previously, the maximum values of 

the strains and stresses are needed when assessing 
the safety of the beam according to the structural 
code or specifications. For the continuous beam 
subjected to concentrated loads, the maximum 
strains of the beam (1)maxε , (2)maxε , and ( )max Bε  can 
be calculated by the average strains from the long 
gage sensors (1)aveε  and (2)aveε  regardless the 
location the concentrated loads. Furthermore, the 
magnitudes of the applied loads 1P  and 2P  can 
also be estimated using the measured average strains 

(1)aveε  and (2)aveε . 
 

 
 

Figure 4. Two span beam with distributed loads 
 

3.2.2 Continuous beams subjected to distributed 
loads 

A continuous beam with spans of lengths 1l  and 2l  
is subjected to a uniform load of 1w  acting on one 
span and a uniform load of 2w  acting on the other 
span (Fig. 4). The moment of inertias for the left and 
right spans are 1I  and 2I , respectively.  

From the free-body diagram of the left span A-B 
shown in Fig. 5, the longitudinal strain of the 
beam, 1( )xε , can be expressed as a function of the 
distance x from the left-hand support. 
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The maximum strain in the continuous beam 
having the distributed loads occurs at the point 
where the bending moment is maximized. The 
maximum value of the bending moment occurs 
where the shear force equals to zero. This point can 
be found by setting / 0dM dx = and solving for the 
value x. 
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By substituting x into the expression for the strain 
in Eq. (19), the maximum strain of the left 
span, (1)maxε , is calculated by  
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If the length of the sensor is set to the distance 
1 / 4l  from the left-hand support to the point where 

no change in the signs of the strain is expected, as 
usually the case with a continuous beam with 
distributed loads, then the average strain over the 
gage length of 1 / 4l , (1)aveε , can be given by 
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Then, from the Eqs. (21) and (22), (1)maxε  can be 
expressed in term of (1)aveε  can be measured from 
the long gage sensor. 
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For the continuous beam subjected to loads, as 
we did for beams subjected to concentrated loads, 
the maximum strain of the right span of the beam, 

(2)maxε , and the maximum strain at the support B, 
( )max Bε  can be estimated by the average strains from 

the long gage sensors (1)aveε  and (2)aveε . 
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4 TEST MODEL 
 
The schematic diagram of the test model is shown in 
Fig. 5. The simple beam model consists of a simply 
supported H-200×200×8×12 section a length of 3 
m. The beam carries two equally spaced 

concentrated loads as shown in the figure. The load 

was increased in three steps  
 Measurements during static testing were 

performed with both a long gage fiber optic sensor 
and five electrical strain gauges. To measure the 
average strain of the beam, a 4 m-long fiber optic 
sensor was continuously attached to the outer 
surface of the bottom flange of the beam. The 
commercially available FT optic sensors and FTI-
3300 scanner has been used in this study (FOX-
TEC, 2003). To get strain distributions along the 
length of the beam and measure strains at local 
points, 5 mm-long electrical strain gauges were 
attached parallel to the long gage optic sensor. The 
locations of the gauges are shown in Fig. 5.  
Table 1. Estimated and measured maximum strains   

 
When the load applied by means of a hydraulic 

jack, the beam deflects downward and the maximum 
compressive strain occurs at the center of the span. 
The mathematical relationship that relates maxε  and 

aveε  of the test model can be given by 

8
7

max aveε ε=  (26) 

The maximum strain at the center of the beam, the 
average strain from the long gage sensor, and 
estimated maximum strain based on the 
mathematical model in Eq. (26) are given in Table 1. 
The maximum differences are found to be 4.67 % in 
average.  
  Fig. 6 shows the comparison between the 
estimated maximum strains obtained through the 
present model and local strain distributions 
measured directly by electrical strain gages. When 
the equally spaced point loads are applied, the 
distributions of measured strain from electrical 
gages are expected to be symmetric about the center 
of the beam. However, Fig. 6 clearly shows that the 
strain distributions are not symmetric about the point 
C. In other words, as usually the case with in 
experimentation, the magnitudes of the point loads 
applied are not the same. 
 

Load 
(kN) 

Estimated 
maximum strain 
based Eq. (26) 
(mm/m) 

Measured 
maximum strain 
from strain gage 
(mm/m) 

122.13 0.565 0.609 
185.21 0.923 0.954 
246.73 1.284 1.331 
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Figure 5. The schematic diagram of the test model  

 
Table 2. Estimated and measured maximum strains with 
modification of loading conditions   

 
It is found that magnitudes of the left and right 

concentrated loads are 43.4 % and 56.6 % of the 
applied concentrated load, respectively. After 
modification of the loading conditions, the estimated 
maximum strains obtained from long gage sensor 
and local strain distributions measured directly by 
electrical strain gages are compared in Table 2. The 
maximum differences are reduced to 2.28 % in 
average. 
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Figure 6. Comparison between the estimated maximum strains 
and measured strains 

5 CONCLUSIONS 

In this paper, mathematical models for 
estimations of the maximum strains in continuous 
beam structures are derived to overcome drawbacks 
involved in point sensors.  

In the estimation models, the maximum strains 
are defined as functions of measured average strains 
from long gage optic sensors. This means that the 
strain variation or stress distribution of a beam can 
be considered by long gage sensors. 

The model was tested on an experiment by 
comparing the maximum strain directly obtained 
from electrical gages and the estimated maximum 
strain based on the average strain from long gage 
optic sensors. The maximum values of strains 
estimated from the presented model agreed quite 
well with the directly measured values from 
electrical strain gauges. The estimated values of the 
maximum strains or stresses in beam can be used in 
assessment of the safety of beams in building and 
infrastructures. 
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