
1 INTRODUCTION 
Economic and life-safety issues have promoted 
significant research in the fields of structural health 
monitoring (SHM) and non-destructive evaluation in 
recent years. As a novel sensor, FRP-OFBG sensing 
tendon1 has been applied in civil engineering 
structural health monitoring. This kind of sensor is 
composed of optical fiber Bragg grating and FRP 
tendon, and its strain monitoring error is less than 
5% (Zhou2003, Li et al. 2004a, Zhou et al. 2003). 
The materials properties and dimension of FRP and 
OFBG will affect the interface strain transferring 
and error of FRP-OFBG sensors. The interface 
transferring properties of the fiber-optic sensors 
(including FRP-OFBG sensors) already brought 
correlative scholars to pay attention to this field, and 
some useful accomplishments have been gained. 
There are a lot of scholars, for example, Nanni 
(1991), Ansari (1998), Duck (1999), Lau (2001), 
Zhou et al (2002a,b) and Zhou (2003) do some 
significant works on this field. Li et al (2004a,b) 
presented the theoretical models and experiment 
researches on interface strain transferring 
mechanism and error modification of embedded and 

adhered FBG sensors. All researches are based on 
the linear elastic theory of material. 

FRP reinforcement or tendons consist of aligned 
continuous fibers, mainly carbon (CFRP), glass 
(GFRP) or aramid (AFRP), embedded in a resin 
matrix such as epoxy, polyester, or vinyl ester by a 
pultrusion process. And OFBG sensors are 
embedded in the center of FRP tendons becoming 
FRP-OFBG sensing tendons. The strain of OFBG is 
independent of time but FRP tendon is a 
nonisotropic composite which strain subjected 
longtime loads is dependent of time at room 
temperature. Hence the creep characteristic of FRP 
tendon will affect the interface strain transferring 
laws of FRP-OFBG sensors. Kalamkarov et al (2000) 
characterized the long-term creep behavior of 
pultruded FRP tendons with the embedded fiber 
optic sensors, and their suitability for monitoring 
long-term service conditions. Patrick (2003) 
discusses the experimental results on properties and 
transfer length of the common types of fiber-
reinforced polymer (FRP) tendons. Colin et al (2005) 
review the literature for information that is pertinent 
to creep in composite materials in order to develop a 
basic understanding of creep mechanisms and how 
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they pertain to a SHM paradigm. In general, creep 
along the fiber direction will be much less than shear 
induced or transverse creep due to the reinforcement 
of the fibers and is usually linear for temperatures 
that are much less than the glass transition 
temperature of the matrix and for time-invariant, 
low magnitude stress. And the matrix dominates 
creep, however, at long time scales creep begins to 
be dominated by the fibers if the load is parallel to 
the fiber direction. Obviously, the shear creep 
compliance along the fiber direction is one of the 
key factors to evaluate the interface strain 
transferring mechanism and error coefficient. But 
there is lack of literatures about shear creep 
compliance of aligned continuous fibers FRP 
tendons. Li et al (2005) have presented results of the 
theoretical part on creep behavior of FBG sensors. 

It is evident from the previous research that 
Findley’s power law creep model is adequate in 
describing the creep behavior of FRP composites. 
Findley’s (1987) model was validated by long-term 
creep tests for tension, compression, and combined 
tension and torsion over a period of 26 years, and is 
recommended by the American Society of Civil 
Engineers (Task Committee ASCE 1984) in its 
Structural Plastics Design Manual. Because FRP-
OFBG sensing tendons are linear viscoelastic 
structure, the Boltzmann superposition principle is 
practicable (Li et al. 2005). 

This paper presents the interface transferring 
mechanism and error modification of FRP-OFBG 
sensors using Findley’s power law creep model 
combining Boltzmann superposition principle. One 
hand, based on the linear viscoelastic constitutive 
relations, the expression of FRP-OFBG sensors 
interface strain transferring mechanism is derived, 
and the error-modified equation of FRP-OFBG 
sensors is obtained. And then, the transient and 
steady state responses of FRP-OFBG sensors are 
presented using initial value and final value 
theorems. At last, the future methods on this 
problem, for example, nonlinear vicoelastic model, 
micromechanics method et al, are prognosticated. 

2 INTERFACE STRAIN TRANSFERRING 
MECHANISM 

2.1 Cylindrical model and displacement 
relationship 

Because the FRP-OFBG sensing tendon embedded 
in the host material is axial symmetry, circular 
cylindrical coordinates are shown in figure1, where 
x is the axial coordinate and r is radial coordinate, 
the symbols r h and r c represent the inner radius of 
the host material and the outer radii of the bare 

optical fiber, respectively measured from the centre 
of the optical fiber core, 2l f is the effective working 
length of the FRP-OFBG sensors. 
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Figure 1 Cylindrical model of FRP-OFBG sensing tendon 

The basic hypotheses: 
1) The optical fiber and host material are linear 

viscoelasticity isotropic body, but FRP tendon is 
linear viscoelasticity nonisotropic body. 

2) All of interfaces are continuous and satisfy 
the displacement compatibility. 

3) Without regard to the temperature effect and 
considering the environment temperature is 
constant. 
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Figure 2 Relationship of deformation for cylindrical model 

According to the hypotheses of displacement 
continuousness, there is a relative displacement 
between the optical fiber and the host material, 
which is resulted from the shear deformations of the 
FRP tendon. In figure 2 (for the axial symmetry, 
showing a quarter-cylinder model), the relationship 
of ever displacement is given by 

( ) ( ) ( )txutxtxu ,,, cfh +∆=                    (1) 

Where the symbols uc (x,t) and uh (x,t) represent the 
displacement of optical fiber and host material 
respectively and ∆f (x,t) is the relative displacement 
between optical fiber and host material, t is time. 
When x=0, the strains for all layers are 
mathematically identical, namely 

( ) ( ) ( )trtrtr ,0,,0,,0, cfh εεε ==                (2) 

2.2 Balance equation for infinitesimal element 
(1) Balance equation of optical fiber infinitesimal 
element  
For the optical fiber is insensitive to the transverse 
stresses (Li et al. 2004a), the effects of the 
transverse normal and shear stresses are ignored, 
and the lengthwise normal and shear stresses are 



considered only. By considering the axial forces 
equilibrium for an element of the optical fiber at 
arbitrary point x, shown in figure 3, we can obtain 
an equation simplified as 
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where σc is tensile stress of optical fiber, τfc is the 
interface shear stress between the optical fiber and 
the FRP tendon. 
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Figure 3 Infinitesimal element of optical fiber 

(2) Balance equation for infinitesimal element of 
FRP tendon 
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Figure 4 Infinitesimal element of FRP tendon 
Figure 4 is the infinitesimal element of 

protective coating. According to the relationship of 
deformation compatibility, approximate expression 
(Christensen 1982) can be obtained by 
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h
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r
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When r = rc, there is 
( ) ( ) hhhfccfc  ,, ,, rtxrrtxr ττ =                  (5) 

Considering the axial balance (x 

direction), ( ) 0,f =
∂

∂
x

txσ , then 

( ) ( )ttx ff , σσ =                            (6) 

If the effective testing length of the optical fibre 
is a less, we can take for 

( ) ( )t, hh σσ =tx                            (7) 

2.3 Stieltjes convolution integral creeping type 
constitutive equations and relationship between 
Displacement and Stress 

Because FRP tendon and host material are linear 
viscoelasticity, their constitutive relation can be 

written as Stieltjes convolution integral (Christensen 
1982) based on Boltzmann superposition principle: 
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Where Jh (t) and Jc (t) represent the tensile creep 
compliance of the host material and optical fiber 
core respectively, Jf (t) represents the shear creep 
compliance of FRP tendon, and σ h (x, 0), σ c (x, 0) 
and τ f (r, x, 0) represent the initial value of every 
layer material. 

Considering above constitutive equations, the 
axial displacements of the host material and the 
optical fiber, the relative displacements of adhesive 
layer and protective coating are given by 
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2.4 Differential Equation and Solution 
(1) Differential equation 

Substituting Eqs.(11), (12)and (13) into Eq. (1), 
making use of Eqs.(2) and (4), differentiated two 
times about x and noticing Eqs.(3), (5) and (7), we 
can obtain 

( ) ( ) ( ) ( )

(14)                                                                         0

,,d2,,dln hhfc2
c

2
hhf

2

f
c

h

=

∗−⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
txrtJ

rx
txrtJ

r
r

τ
τ

We make Laplace transform on Eq. (17), and let 
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We can obtain differential equation as follows: 
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Where ( )sxr ,,hhfτ , ( )sJ c and ( )sJ f represent Laplace 
transform couple of ( )txr ,,hhfτ , ( )tJ c  and ( )tJ f  
respectively, λ  is the eigenvalue of differential 
equation (16) but not the Laplace transform couple 
of λ . 

(2) Solution 

The complete solution to Eq. (16) is given by 

( ) ( ) ( ) ( ) ( )xsBxsAsxr λλτ sinhcosh,,hhf +=     (17) 

where A(s) and B(s) are integral constants decided 
by the boundary conditions. 

The axes force of optical fiber can be written as 
follows 
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Integral Eq. (3), notice Eq. (5) and when 
x=0,σc(0, t) =σc(t), then 
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Substitute Eq. (19) into Eq. (18), we can obtain 
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Making Laplace transform on Eqs. (19) and (20), 
then become 
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Substitute Eq. (17) into Eq. (22), there be 

( ) ( )

( ) ( ) ( ) ( ) ( )[ ]sBxsBxλsA

rsrsxN

++×

−=

λ
λ

πσπ

coshsinh

1 2 , hc
2

cc (23) 

Considering Laplace transform of Eq. (2), 
( ) ( )srsr ,0,,0, hhcc εε =  and when x = lf the fibre-optic 

axial force is zero, then 
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where lf is the distance measured from the mid-beam 
(x = 0) to the point of zero axial load of the fibre. 

Using above boundary condition, the constants A(s) 
and B(s) are obtained by 
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Combining Eqs. (17) and (25) yields the final 
form of shear stress distribution at the interface 
between the adhesive layer and protective coating in 
Laplace transform space 
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Substitute Eq. (26) into Eq. (21), there be 
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Considering the Laplace transform of Eq. (9) 
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Substitute Eq. (27) into Eq. (28)1 and notice (28)2, 
We can obtain 
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Considering the Laplace transform of Eqs. (2), (8) 
and (9), then 
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Eq. (29a) can be written as follows: 
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Meanwhile, 
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Making inverse Laplace transform on Eqs. (29), 
the interface strain transferring function of FRP-
OFBG sensors can be presented as follows: 
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Given the shear creep compliance Jf (t) of FBG 
and tensile creep compliance Jc (t) of optical fiber, 
the ( )sJ f and ( )sJ c can be obtained and λ can be known 
too, then the strain of FRP-OFBG sensors at point x 
can be calculated by Eqs. (30). 

3 CREEP CHARACTERISTIC ANALYSES AND 
AVERAGE CREEP STRAIN 

3.1 Creep test analyses 
If a step stress function at the point x=0 of fiber core 
host material is given as 

( ) ( )tHt cc ,0 σσ =   ( ) ( )tHt hh ,0 σσ =         (31) 

where σ c andσ h are constant stress and H(t)is 
Heaviside function, namely 
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The Laplace transform couple of Eq. (31) is 
written as follows: 
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Institute Eq. (33) into Eq. (30c, d), then 
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The results of inverse Laplace transforms about 
Eqs. (34), (35) are follows: 
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If a step strain function at the point x=0 of fiber 
core and host material is given as 

( ) ( )tHt cc ,0 εε =   ( ) ( )tHt hh ,0 εε =           (38) 
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Similar to the above, institute Eq. (39) into Eq. 
(30a, d), then 
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3.2 Average creep strain 
From Eq. (41), it is clearly that there is difference at 
the testing point between the axial strain of the 
optical fibre (εc(x, t)) and the host material (ε h(x, t)). 
If and only if x=0, then ε c(0, t) =ε h(0, t). While 
monitoring, we could not obtain the strain of every 
point of x where the FRP-OFBG sensor is set up. 
Hence, in order to estimate the error between the 
testing strain of the FRP-OFBG sensor and the 
practical strain of the host material and modify it, 
the average measured strain of FRP-OFBG sensor 
and the host material are defined as 
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If lf is small value, let ε h(x, t) =ε h(0, t) =ε hH(t), 
then the average strains are 
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We define the creep strain transferring error rate 
η(t) and the creep strain modified coefficient k(t) as 
follows: 
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then 
( ) ( ) ( )ttkt ch ΕΕ =                          (47) 

This equation gives the relationship between the 
FRP-OFBG sensor testing creep strain and the 
practical strain of the host material, as well as 
affords the theory base for the creep analysis and 
modification of the system error. 

4 FINDLEY’S POWER LAW AND IMAGE 
FUNCTION OF ERROR RATE η 

4.1 Findley’s power law 
Many mathematical models have been proposed to 
describe the creep behavior of plastics in term of 
stress, strain, and time. Findley’s power law has 



become the most commonly used empirical to 
analyze the viscoelastic behavior of plastics and 
composites under constant stress because of its 
simplicity and successful simulation. Shao (2004), 
McClure (1995), and Scott (1998) respectively study 
tensile, shear, compressiom, and deflection creep of 
pultruded composite sheet piling, stub, and beam 
using Findley’s power law model. The expression of 
Findley’s model can be generalized to include 
different types of creep (Shao 2004). Inorder to 
discribe the shear creep compliance of FRP tendon, 
the shear creep strain is considered only 
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where γ (t) is time-dependent shear creep strain, γ 0 
is stress-dependent and time-independent initial 
shear strain, m is stress- and time-dependent shear 
creep coefficient, 0<n<1 is stress-independent 
material constant for shear creep, t is time (hours), 
and t0 is unit time (1 hour). 

According to Shao (2004), the exact Findley’s 
expression with hyperbolic sine functions and the 
simplified Findley’s expression with linear relation 
differed by at most 4% after 75 years (Scott 1998). 
Therefore, within the primary and secondary creep 
regions, the linear vicoelastic behavior of 
composites could be assumed and the time-
dependent viscoelastic shear modulus Gf(t) could be 
calculated using Eq. (48): 
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where τ 0, γ 0, and G 0 are time-independent intial 
shear stress, initial shear strain, and shear modulus, 
respestively. And G t=τ 0/m=G 0γ 0/m is viscoelastic 
shear parameter.  

Since Eq. (49) is derived from the simplified 
Findley’s expression, the viscoelastic shear modulus 
Gf(t) is independent of the stress lever and the 
viscoelastic shear parameter G t should be a constant 
for a given material. It is indicative that the ratio of γ 

0/m is close to a constant at different load lever. To 
apply Findley’s model, coefficients m and material 
constant n in Eqs. (48) (49) have to be determined 
through curve fitting of experimental data. 
Rearranging Eq. (48) and taking the ln on both sides 
of equation gives 
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When the logarithmic creep is plotted versus the 
logarithmic time, it is straight line, of which the 
slope yields the material constant n, and the y 
intercepts gives the value of ln(m). 
4.2 Image function of error rate η 
According to Eq. (49), the shear creep compliance 
of FRP tendon under the constant stress can be 
obtained as follow: 

( ) ( ) n

t t
t

GG
ttJ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅+==

000
f

11
τ
γ               (51) 

Because the optical fiber is made up of glass, 
which tensile creep strain is very small and can be 
ignored, the optical fiber can be adopted Hooke 
body. Then the tensile creep compliance is a 
constant, namely 
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where Ec is the Young’s modulus of the optical 
fiber. 

The Laplace transform couple of Eqs. (51) (52) 
are written as follows: 
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Substitute Eqs. (51) (52) into the Eq. (15), there be 
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where λ0 is the initial eigenvalue of the equation 
(14), namely, the λ of equation (32) in the reference 
LI et al. 2004. 
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t
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Γ , then Eq. (55) can be written 
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Let ( ) flsz λ= , As a result, the image function of the 
error rate η can be expressed as: 
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5 TRANSIENT AND STEADY-STATE 
RESPONSES OF ERROR RATE η 

It is usually difficult to obtain an analytic expression 
from an inverse Laplace transform of Eq. (57). In 
order to research the creep responses of viscoelastic 
body, we usually adopt approximative solution. For 
example, numerical method analysis is to spread the 

( )sη  as perpendicular function and then put up 
inverse Laplace transform. Another approximative 
solution is by the use of the initial and final value 
theorems of Laplace transform to find the transient 
and steady-state responses and then evaluate the 
creep influence. 
5.1 Transient response 
Noticing Eq. (56), we have: 
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According to the initial theorem, the initial error 
rate η(0), when t=0, can be obtained: 
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This equation is same as the Eq. (28) of 
reference Li et al. 2004a, which present that the 
solution of elasticity is the transient responses of 
viscoelasticity. 
5.2 Steady-state response 
The same as 5.1, we can obtain steady-state solution 
as follows: 
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According to the final theorem, when t→∞, 
noticing Eq. (62) and using L’Hospital principle, the 
final error rate η(∞) can be obtained: 
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Then, the initial and final values of the 
modification coefficient k can be obtained: 
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In general, the extent of the error rate is between 
η(0) and 1/2, namely: 

( ) ( ) 210 =∞≤≤ ηηη                      (66) 

6 A NEW APPROXIMATIVE SOLUTION 

Usually, the lifetime of FRP-OFBG is more than 50 
years and less than 100 years. In engineering 
practice, the error rate of a certain time, for example 
30 years or 60 years, is paid more attention to, 
whereas, couldn’t be obtained from the method of 
the above. In order to calculate the error rate of a 
certain time, a new approximative method is given 
later. 
6.1 Reformative initial value principle 
Considering the characteristic of the initial value 
principle, that the initial value is independent of 
subsequence time, a reformative initial value 
principle is put foreword as followed: 

Firstly, according to Eqs. (51) and (52), when 
t=τ, the shear creep compliance of FRP and tensile 
creep compliance optical fiber can be written 
respectively: 
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Secondly, supposing that materials are solidified 
at the moment ofτ and unloaded, at that time a new 
kind of materials are obtained, which initial creep 
compliances are Jf(τ)and Jc(τ). And then, the creep 
compliances of the new kind of materials can be 
defined as: 
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where Gτ is dependent ofτ, which calculating 
method is the same as Gt. Obviously, the value of 
Eq. (69) is bigger than the value of Eq. (51) in the 
same time extent. But the later calculation couldn’t 
be affected. 

Finally, repeating steps from Eq. (53) to (60), the 
main results can be expressed; 
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Obviously, given a creep timeτ, the 
corresponding error rate η(τ) can be calculated from 
Eq. (80). And considering Eqs. (67), (74), (79) and 
(80), we will obtain some expressions as followed: 
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When τ→∞, there is Jf(∞)→∞, and then λτ →0 
and ( ) 0~ →∞z , hence, using L’Hospital principle 
we have: 

( ) ( ) ( )∞==
−

==
→∞→∞=

ητητη
ττ 2

1
~sinh~

1~coshlimlim
0~ zz

z
z

 (84) 

then 
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In general, not only is the same as between the 
Eqs. (85) and (66) in the form, but could be 
calculated the error rate at any time by the former. 
6.2 Calculating example 
For lack of the shear compliance experimental data 
of the GFRP tendon at hand, the experimental data 
G0, Gt, and n come from Shao (2004). The other 
data come from Zhou (2003). All the data are 
summarized in Table 1. 
Table 1 GFRP-OFBG Sensing Tendon Parameters 

Lf(mm) rc(mm) rh(mm) Ec(GPa) G0(GPa) Gt(GPa) n 

10 6.25×10-2 3,5,10 70 3.07 107 0.33

 

Figure 5 Creep error rate curves of GFRP-OFBG sensor 

 

Figure 6 Creep error rate curves of GFRP-OFBG in 100 years 

Substituting Eq. (67) into Eq. (80), using data of 
Table 1, we can calculate the error rate η at any 
time. Figure 5 gives the comparing curves about 
three sizes of GFRP-OFBG sensing tendons error 



rate changing extent in 50 years, the rh is rh, namely, 
the radius of the FRP tendon. In figure6, the three 
curves of GFRP-OFBG sensing tendons error rates 
in 100 years are compared to the steady response 
curve. 

Results are stated that the type error rate creep 
curves of the GFRP-OFBG sensors are the same as 
the creep curves of the FRP materials. There is an 
initial value that is fully elastic followed by stage II 
or primary error rate induced creep, which is 
characterized a continuously decreasing error rate 
variation. Stage II (secondary or steady-state) error 
rate exhibits a constant variation of error rate. But 
not followed by stage III where the error rate 
variation increases rapidly until creep rupture 
because the Findley’s power law model ignores the 
stage III creep of FRP materials. Comparing to the 
initial and final principle solution, this new 
approximative method can calculate the value of 
error rate at any time. 

For example, when rh=3mm, the error rate 
calculating data from Eq. (80) of the FRP-OFBG 
sensing tendon are displayed in table 2. Obviously, 
the fist 0.01 increment of error rate is in a period of 
7152h(10m), and the second is in a period of 
78840h(9years), the third is in a period of 
359160h(41years). In a word, if the using time of 
FRP-OFBG sensors is less than 50 years, the 
increment of the error rate is 0.02 during the fist 
decade, and in the followed decades the increment 
of error rate is less than 0.01. Hence, convenient for 
using, the error rate is equaled average 0.0468 in the 
first year, and 0.0571 between 1th and 10th year, and 
0.0676 between 11th and 50th year. 
Table 2 Error rates of FRP-OFBG sensors (rh=3mm, rh=rh) 

τ (h) 0 7152 8760 78840 17520 262800 359160 438000 876600

d.m.y. 0 10m 1y 9y 20y 30y 41y 50y 100y

η (%) 0.0415 0.0515 0.0521 0.0614 0.0662 0.0690 0.0714 0.0730 0.0790

7 CONCLUSION 

This paper presents the interface transferring 
mechanism and error modification of the FRP-
OFBG sensing tendons using Findley’s power law 
creep model combining Boltzmann superposition 
principle. The tensile creep compliance of optical 
fiber is independent of time at room temperature. 
And the shear creep strains of FRP (GFRP or CFRP) 
are dependent of time at room temperature. Hence, 
the Findley’s power law model is employed to 
describe the creep compliance of FRP when linear 
viscoelastic behavior is assumed. The expression of 
interface strain transferring mechanism of FRP-
OFBG sensors is derived based on linear 

viscoelastic theory. And the transient and steady-
state error rate of FRP-OFBG sensors is obtained 
using initial value and final value theorems. Then a 
reformative initial value principle is given to 
describe the changing of the error rate following the 
loading time. At last, an example is given to explain 
the correct of the new principle. 

Researches indicate that: 
(1) The type error rate creep curves of the GFRP-

OFBG sensors are the same as the creep curves 
of the FRP materials. There is an initial value 
that is fully elastic followed by stage II or 
primary error rate induced creep, which is 
characterized a continuously decreasing error 
rate variation. Stage II (secondary or steady -
state) error rate exhibits a constant variation of 
error rate. But not followed by stage III where 
the error rate variation increases rapidly until 
creep rupture because the Findley’s power law 
model ignores the stage III creep of FRP 
materials. 

(2) If the using time of FRP-OFBG sensors is less 
than 50 years, the increment of the error rate is 
0.02 during the fist decade, and in the followed 
decades the increment of error rate is less than 
0.01. Hence, convenient for using, the error rate 
is equaled average 0.0468 in the first year, and 
0.0571 between 1st and 10th year, and 0.0676 
between 11th and 50th year. 

(3) Although it is difficult to obtain the analytical 
solution, the transient and steady-state responses 
is a very effective method for us to observe and 
learn the changing result of strain of FBG 
sensors influenced by creep of multiple layers 
interface material. Comparing to the initial and 
final principle solution, this new approximative 
method can calculate the value of error rate at 
any time. 

(4) In order to verify the validity of above theories, 
a lot of experiments should be done in following 
researches. 

(5) It is necessary to research this problem applied 
other principles which more accurate than 
Findley’s model. 
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